IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4617-d1658419.html
   My bibliography  Save this article

An Intelligent Heuristic Algorithm for a Multi-Objective Optimization Model of Urban Rail Transit Operation Plans

Author

Listed:
  • Weisong Han

    (College of Transportation Engineering, Nanjing Tech University, Nanjing 211899, China)

  • Zhihan Shi

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China)

  • Xiaodong Lv

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China)

  • Guangming Zhang

    (College of Transportation Engineering, Nanjing Tech University, Nanjing 211899, China)

Abstract

Urban rail transit (URT) systems frequently face operational challenges arising from temporal and spatial imbalances in passenger demand, resulting in inefficiencies in train scheduling and resource utilization. To address these issues, this study proposes a multi-objective optimization model that jointly plans short-turn and full-length train services. The objectives of the model are to minimize total passenger waiting time and train mileage while improving passenger load distribution across the rail line, subject to practical constraints such as departure frequency limitations, rolling stock availability, and coverage of short-turn services. To efficiently solve this model, an improved Pelican Optimization Algorithm (POA) is developed, incorporating techniques such as Tent chaotic mapping, nonlinear weight adjustment, Cauchy mutation, and the sparrow alert mechanism, significantly enhancing convergence accuracy and computational efficiency. A real-world case study based on Nanjing Metro Line 1 demonstrates that the proposed framework substantially reduces average passenger waiting times and overall train mileage, achieving a more balanced distribution of passenger loads. In addition, the study reveals that flexible-ratio dispatching strategies, representing theoretically optimal solutions, outperform integer-ratio dispatching schemes that reflect real-world operational constraints. This finding underscores that investigating the practical feasibility and optimization potential of flexible-ratio scheduling strategies constitutes a valuable direction for future research. The outcomes of this study provide a scalable and intelligent decision-support framework for train scheduling in URT systems, effectively contributing to the sustainable and intelligent development of rail operations.

Suggested Citation

  • Weisong Han & Zhihan Shi & Xiaodong Lv & Guangming Zhang, 2025. "An Intelligent Heuristic Algorithm for a Multi-Objective Optimization Model of Urban Rail Transit Operation Plans," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4617-:d:1658419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Renming & Li, Shukai & Yang, Lixing, 2020. "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy," Omega, Elsevier, vol. 90(C).
    2. Fei Dou & Huiru Zhang & Haodong Yin & Yun Wei & Yao Ning, 2022. "An Optimization Method of Urban Rail Train Operation Scheme Based on the Control of Load Factor," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    3. Zhang, Hui & Zhan, Bo & Ouyang, Min, 2024. "Enhancing accessibility through rail transit in congested urban areas: A cross-regional analysis," Journal of Transport Geography, Elsevier, vol. 115(C).
    4. Jia Feng & Guowei Li & Yuxin Shi & Zhengzhong Li & Shanshan Liu, 2022. "Urban Rail Transit Rolling Stock Scheduling Optimization with Shared Depot," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    5. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zebin & D’Ariano, Andrea & Li, Shukai & Tessitore, Marta Leonina & Yang, Lixing, 2024. "Robust dynamic train regulation integrated with stop-skipping strategy in urban rail networks: An outer approximation based solution method," Omega, Elsevier, vol. 128(C).
    2. Zhen Di & Hanqi Zuo & Housheng Zhou & Jianguo Qi & Shenghu Zhang, 2025. "Integrated Optimization of Train Schedules and Transportation Plans for a Passenger–Freight Metro Line," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    3. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    4. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    5. Di, Zhen & Yang, Lixing & Shi, Jungang & Zhou, Housheng & Yang, Kai & Gao, Ziyou, 2022. "Joint optimization of carriage arrangement and flow control in a metro-based underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 1-23.
    6. Linghui Xu & Jia Lu & Shuichao Zhang & Gang Ren & Kangkang He, 2024. "Subway Multi-Station Coordinated Dynamic Control Method Considering Transfer Inbound Passenger Flow," Sustainability, MDPI, vol. 16(24), pages 1-21, December.
    7. Fuquan Pan & Jingshuang Li & Hailiang Tang & Changxi Ma & Lixia Zhang & Xiaoxia Yang, 2023. "Collaborative Determination Method of Metro Train Plan Adjustment and Passenger Flow Control under the Impact of COVID-19," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    8. Ning Huan & Stephane Hess & Enjian Yao, 2022. "Understanding the effects of travel demand management on metro commuters’ behavioural loyalty: a hybrid choice modelling approach," Transportation, Springer, vol. 49(2), pages 343-372, April.
    9. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhan, Shuguang & Peng, Qiyuan, 2024. "Joint rolling stock rotation planning and depot deadhead scheduling in complicated urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 314(2), pages 665-684.
    10. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    11. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    12. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    13. Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
    14. Yin, Jiateng & Wang, Miao & D’Ariano, Andrea & Zhang, Jinlei & Yang, Lixing, 2023. "Synchronization of train timetables in an urban rail network: A bi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    15. Zhang, Lang & He, Deqiang & He, Yan & Liu, Bin & Chen, Yanjun & Shan, Sheng, 2022. "Real-time energy saving optimization method for urban rail transit train timetable under delay condition," Energy, Elsevier, vol. 258(C).
    16. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    17. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    18. Wu, Dongyu & Zhang, Yingheng & Xiang, Qiaojun, 2024. "Could improving public transport accessibility reduce road traffic carbon dioxide emissions? A simulation-based counterfactual analysis," Journal of Transport Geography, Elsevier, vol. 119(C).
    19. Sartor, Giorgio & Mannino, Carlo & Nygreen, Thomas & Bach, Lukas, 2023. "A MILP model for quasi-periodic strategic train timetabling," Omega, Elsevier, vol. 116(C).
    20. Wang, Yong & Peng, Shouguo & Zhou, Xuesong & Mahmoudi, Monirehalsadat & Zhen, Lu, 2020. "Green logistics location-routing problem with eco-packages," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4617-:d:1658419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.