Author
Listed:
- Weisong Han
(College of Transportation Engineering, Nanjing Tech University, Nanjing 211899, China)
- Zhihan Shi
(College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China)
- Xiaodong Lv
(College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China)
- Guangming Zhang
(College of Transportation Engineering, Nanjing Tech University, Nanjing 211899, China)
Abstract
Urban rail transit (URT) systems frequently face operational challenges arising from temporal and spatial imbalances in passenger demand, resulting in inefficiencies in train scheduling and resource utilization. To address these issues, this study proposes a multi-objective optimization model that jointly plans short-turn and full-length train services. The objectives of the model are to minimize total passenger waiting time and train mileage while improving passenger load distribution across the rail line, subject to practical constraints such as departure frequency limitations, rolling stock availability, and coverage of short-turn services. To efficiently solve this model, an improved Pelican Optimization Algorithm (POA) is developed, incorporating techniques such as Tent chaotic mapping, nonlinear weight adjustment, Cauchy mutation, and the sparrow alert mechanism, significantly enhancing convergence accuracy and computational efficiency. A real-world case study based on Nanjing Metro Line 1 demonstrates that the proposed framework substantially reduces average passenger waiting times and overall train mileage, achieving a more balanced distribution of passenger loads. In addition, the study reveals that flexible-ratio dispatching strategies, representing theoretically optimal solutions, outperform integer-ratio dispatching schemes that reflect real-world operational constraints. This finding underscores that investigating the practical feasibility and optimization potential of flexible-ratio scheduling strategies constitutes a valuable direction for future research. The outcomes of this study provide a scalable and intelligent decision-support framework for train scheduling in URT systems, effectively contributing to the sustainable and intelligent development of rail operations.
Suggested Citation
Weisong Han & Zhihan Shi & Xiaodong Lv & Guangming Zhang, 2025.
"An Intelligent Heuristic Algorithm for a Multi-Objective Optimization Model of Urban Rail Transit Operation Plans,"
Sustainability, MDPI, vol. 17(10), pages 1-25, May.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:10:p:4617-:d:1658419
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4617-:d:1658419. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.