IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3820-d1387620.html
   My bibliography  Save this article

Standing Watch: Baselining Predictable Events That Influence Maritime Operations in the Context of the UN’s Sustainable Development Goals

Author

Listed:
  • Bruce Lambert

    (Department of Transport and Regional Economics, Faculty of Business and Economics, University of Antwerp, 2000 Antwerpen, Belgium)

  • James Merten

    (Department of Transport and Regional Economics, Faculty of Business and Economics, University of Antwerp, 2000 Antwerpen, Belgium)

Abstract

The authors present a practical framework for assessing seasonal events that may influence maritime operations, seeking to tie in discussions about climate change adoption to maritime operational assessments. Most maritime-related research tends to focus on a single event, such as a storm, but maritime systems operate within complex systems that have some predictable patterns. These predictable patterns due to natural events, such as weather and water levels, can influence operations. By contrast, other factors, such as cargo peaks or cultural activities, could also shape maritime systems. The growing focus on adopting human activities to the United Nations’ Sustainability Development Goals means that system operations should consider their relationship to these broader goals. By integrating data from emergency management databases and weather information sources with other inputs, the authors, in collaboration with various stakeholder groups, created a matrix of regionally specific predictable events that may occur within a region by time of year that can be linked to the Sustainability Development Goals. The matrix was vetted to verify the information, ensuring that all perspectives were considered. The main findings were that a seasonal event matrix was not just a theoretical tool but a practical reference for examining operational patterns in a river for various uses, such as training, operational planning, and emergency response coordination.

Suggested Citation

  • Bruce Lambert & James Merten, 2024. "Standing Watch: Baselining Predictable Events That Influence Maritime Operations in the Context of the UN’s Sustainable Development Goals," Sustainability, MDPI, vol. 16(9), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3820-:d:1387620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengya Li & Jun Wang & Xiaojing Sun, 2016. "Scenario-based risk framework selection and assessment model development for natural disasters: a case study of typhoon storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2037-2054, February.
    2. Alessandro C. Mondini & Fausto Guzzetti & Massimo Melillo, 2023. "Deep learning forecast of rainfall-induced shallow landslides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Mengya Li & Jun Wang & Xiaojing Sun, 2016. "Scenario-based risk framework selection and assessment model development for natural disasters: a case study of typhoon storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2037-2054, February.
    4. Tao, Longlong & Chen, Liwei & Ge, Daochuan & Yao, Yuantao & Ruan, Fang & Wu, Jie & Yu, Jie, 2022. "An integrated probabilistic risk assessment methodology for maritime transportation of spent nuclear fuel based on event tree and hydrodynamic model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Ding & Pei Wang & Xiaoling Liu & Xuliang Zhang & Lei Hong & Zhibin Cao, 2020. "Risk assessment of highway structures in natural disaster for the property insurance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2663-2685, December.
    2. Juan Camilo Gomez-Zapata & Cristhian Parrado & Theresa Frimberger & Fernando Barragán-Ochoa & Fabio Brill & Kerstin Büche & Michael Krautblatter & Michael Langbein & Massimiliano Pittore & Hugo Rosero, 2021. "Community Perception and Communication of Volcanic Risk from the Cotopaxi Volcano in Latacunga, Ecuador," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    3. Xiaorong He, 2018. "Typhoon disaster assessment based on Dombi hesitant fuzzy information aggregation operators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1153-1175, February.
    4. Lu Chen & Yue-cheng Huang & Rui-zhen Bai & An Chen, 2017. "Regional disaster risk evaluation of China based on the universal risk model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 647-660, November.
    5. Uflaz, Esma & Sezer, Sukru Ilke & Tunçel, Ahmet Lutfi & Aydin, Muhammet & Akyuz, Emre & Arslan, Ozcan, 2024. "Quantifying potential cyber-attack risks in maritime transportation under Dempster–Shafer theory FMECA and rule-based Bayesian network modelling," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Arcaro, Anna & Zhuang, Bozhou & Gencturk, Bora & Ghanem, Roger, 2024. "Damage detection and localization in sealed spent nuclear fuel dry storage canisters using multi-task machine learning classifiers," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    9. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Ascanio Rosi, 2023. "Exploring the Use of Pattern Classification Approaches for the Recognition of Landslide-Triggering Rainfalls," Sustainability, MDPI, vol. 15(20), pages 1-11, October.
    11. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Xie, Qimiao & Zhou, Tianyi & Wang, Changjian & Zhu, Xu & Ma, Chao & Zhang, Aifeng, 2024. "An integrated uncertainty analysis method for the risk assessment of hydrogen refueling stations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    13. Elidolu, Gizem & Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan & Arslanoglu, Yasin, 2023. "Operational risk assessment of ballasting and de-ballasting on-board tanker ship under FMECA extended Evidential Reasoning (ER) and Rule-based Bayesian Network (RBN) approach," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3820-:d:1387620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.