IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3716-d1385652.html
   My bibliography  Save this article

Sustainability in Aquatic Ecosystem Restoration: Combining Classical and Remote Sensing Methods for Effective Water Quality Management

Author

Listed:
  • Robert Mazur

    (Department of Environmental Management and Protection, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Krakow, 30-059 Krakow, Poland
    Departamento Arqueologia, Conservação e Restauro e Património, Polytechnic Institute of Tomar, 300-313 Tomar, Portugal)

  • Zbigniew Kowalewski

    (Department of Environmental Management and Protection, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Krakow, 30-059 Krakow, Poland)

  • Ewa Głowienka

    (Department of Photogrammetry, Remote Sensing, and Spatial Engineering, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Krakow, 30-059 Krakow, Poland)

  • Luis Santos

    (Departamento Arqueologia, Conservação e Restauro e Património, Polytechnic Institute of Tomar, 300-313 Tomar, Portugal)

  • Mateusz Jakubiak

    (Department of Environmental Management and Protection, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Krakow, 30-059 Krakow, Poland
    Departamento Arqueologia, Conservação e Restauro e Património, Polytechnic Institute of Tomar, 300-313 Tomar, Portugal)

Abstract

The utilization of Effective Microorganisms (EMs) for lake restoration represents a sustainable approach to enhancing water quality and rebalancing the ecology of aquatic ecosystems. The primary objective of this study was to evaluate the effects of two bioremediation treatment cycles employing EM-enriched biopreparations on water quality in the Siemiatycze lakes. Specifically, this research analyzed various parameters, including dissolved oxygen, transparency, chlorophyll-a, pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total phosphorus, total nitrogen, and suspended matter (SM), across eleven designated sampling locations. Additionally, this study employed remote sensing techniques, leveraging Sentinel-2 satellite imagery and the Maximum Chlorophyll Index (MCI), to detect and quantify algal blooms, with a particular focus on elevated chlorophyll-a concentrations. This comprehensive approach aimed to provide a holistic understanding of the impact of biotechnological reclamation on aquatic ecosystem restoration and sustainability. The study’s findings indicated a significant improvement in water quality in all lakes, with enhanced water clarity and oxygen profiles. Further, remote sensing studies indicated a reduction in algal blooms, particularly those with high chlorophyll-a concentrations. A considerable decrease in water eutrophication intensity was observed due to diminished nutrient concentrations. The improvements in water parameters are likely to enhance the living conditions of aquatic organisms. These results demonstrate the effectiveness of using EM-enriched biopreparations in the bioremediation of lakes, providing a sustainable approach to enhancing water quality and balancing aquatic ecosystems.

Suggested Citation

  • Robert Mazur & Zbigniew Kowalewski & Ewa Głowienka & Luis Santos & Mateusz Jakubiak, 2024. "Sustainability in Aquatic Ecosystem Restoration: Combining Classical and Remote Sensing Methods for Effective Water Quality Management," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3716-:d:1385652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kareiva, Peter & Tallis, Heather & Ricketts, Taylor H. & Daily, Gretchen C. & Polasky, Stephen (ed.), 2011. "Natural Capital: Theory and Practice of Mapping Ecosystem Services," OUP Catalogue, Oxford University Press, number 9780199589005, Decembrie.
    2. Jiancao Gao & Nailin Shao & Yi Sun & Zhijuan Nie & Xiwei Yang & Fei Dai & Gangchun Xu & Pao Xu, 2023. "Impact of Effective Microorganisms and Chlorella vulgaris on Eriocheir sinensis and Water Microbiota in Ponds Experiencing Cyanobacterial Blooms," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hermes, Johannes & von Haaren, Christina & Schmücker, Dirk & Albert, Christian, 2021. "Nature-based recreation in Germany: Insights into volume and economic significance," Ecological Economics, Elsevier, vol. 188(C).
    2. Frélichová, Jana & VaÄ kář, David & Pártl, Adam & LouÄ ková, Blanka & HarmÃ¡Ä ková, Zuzana V. & Lorencová, EliÅ¡ka, 2014. "Integrated assessment of ecosystem services in the Czech Republic," Ecosystem Services, Elsevier, vol. 8(C), pages 110-117.
    3. La Notte, Alessandra & Maes, Joachim & Dalmazzone, Silvana & Crossman, Neville D. & Grizzetti, Bruna & Bidoglio, Giovanni, 2017. "Physical and monetary ecosystem service accounts for Europe: A case study for in-stream nitrogen retention," Ecosystem Services, Elsevier, vol. 23(C), pages 18-29.
    4. repec:dav:journl:y:2016:v:7:i:11:p:1272-1289 is not listed on IDEAS
    5. Gardner, Toby A. & Ferreira, J. & Barlow, J. & Lees, A. C. & Parry, L. & Vieira, I. C. G. & Berenguer, E. & Abramovay, R. & Aleixo, A. & Andretti, C. & Aragao, L. E. O. C. & Araujo, I. & de Avila, W. , 2013. "A social and ecological assessment of tropical land uses at multiple scales: the Sustainable amazon network," LSE Research Online Documents on Economics 50120, London School of Economics and Political Science, LSE Library.
    6. You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike & Wu, Wenbin, 2014. "Generating global crop distribution maps: From census to grid," Agricultural Systems, Elsevier, vol. 127(C), pages 53-60.
    7. Pierre Mokondoko & Robert H Manson & Taylor H Ricketts & Daniel Geissert, 2018. "Spatial analysis of ecosystem service relationships to improve targeting of payments for hydrological services," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-27, February.
    8. Claudia Cosentino & Federico Amato & Beniamino Murgante, 2018. "Population-Based Simulation of Urban Growth: The Italian Case Study," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    9. Rau, Anna-Lena & von Wehrden, Henrik & Abson, David J., 2018. "Temporal Dynamics of Ecosystem Services," Ecological Economics, Elsevier, vol. 151(C), pages 122-130.
    10. Han-Shen Chen & Wan-Yu Liu & Chi-Ming Hsieh, 2017. "Integrating Ecosystem Services and Eco-Security to Assess Sustainable Development in Liuqiu Island," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    11. Zhang, Yan & Wu, Tong & Song, Changsu & Hein, Lars & Shi, Faqi & Han, Mingchen & Ouyang, Zhiyun, 2022. "Influences of climate change and land use change on the interactions of ecosystem services in China’s Xijiang River Basin," Ecosystem Services, Elsevier, vol. 58(C).
    12. Shuxiang Li & Shuhua Ma, 2024. "A Quantitative Analysis on the Coordination of Regional Ecological and Economic Development Based on the Ecosystem Service Evaluation," Land, MDPI, vol. 13(2), pages 1-21, February.
    13. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    14. Ma, Shan & Duggan, Jennifer M. & Eichelberger, Bradley A. & McNally, Brynn W. & Foster, Jeffrey R. & Pepi, Eda & Conte, Marc N. & Daily, Gretchen C. & Ziv, Guy, 2016. "Valuation of ecosystem services to inform management of multiple-use landscapes," Ecosystem Services, Elsevier, vol. 19(C), pages 6-18.
    15. Klimanova, O.A. & Bukvareva, E.N. & Yu, Kolbowsky E. & Illarionova, O.A., 2023. "Assessing ecosystem services in Russia: Case studies from four municipal districts," Land Use Policy, Elsevier, vol. 131(C).
    16. Cabral, Pedro & Feger, Clément & Levrel, Harold & Chambolle, Mélodie & Basque, Damien, 2016. "Assessing the impact of land-cover changes on ecosystem services: A first step toward integrative planning in Bordeaux, France," Ecosystem Services, Elsevier, vol. 22(PB), pages 318-327.
    17. Mengyao Li & Yong Zhou & Pengnan Xiao & Yang Tian & He Huang & Liang Xiao, 2021. "Evolution of Habitat Quality and Its Topographic Gradient Effect in Northwest Hubei Province from 2000 to 2020 Based on the InVEST Model," Land, MDPI, vol. 10(8), pages 1-25, August.
    18. Accatino, Francesco & Tonda, Alberto & Dross, Camille & Léger, François & Tichit, Muriel, 2019. "Trade-offs and synergies between livestock production and other ecosystem services," Agricultural Systems, Elsevier, vol. 168(C), pages 58-72.
    19. Ruckelshaus, Mary & McKenzie, Emily & Tallis, Heather & Guerry, Anne & Daily, Gretchen & Kareiva, Peter & Polasky, Stephen & Ricketts, Taylor & Bhagabati, Nirmal & Wood, Spencer A. & Bernhardt, Joanna, 2015. "Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions," Ecological Economics, Elsevier, vol. 115(C), pages 11-21.
    20. Birch, Jennifer C. & Thapa, Ishana & Balmford, Andrew & Bradbury, Richard B. & Brown, Claire & Butchart, Stuart H.M. & Gurung, Hum & Hughes, Francine M.R. & Mulligan, Mark & Pandeya, Bhopal & Peh, Kel, 2014. "What benefits do community forests provide, and to whom? A rapid assessment of ecosystem services from a Himalayan forest, Nepal," Ecosystem Services, Elsevier, vol. 8(C), pages 118-127.
    21. Roberto Falanga & Jessica Verheij & Olivia Bina, 2021. "Green(er) Cities and Their Citizens: Insights from the Participatory Budget of Lisbon," Sustainability, MDPI, vol. 13(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3716-:d:1385652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.