IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2867-d1366621.html
   My bibliography  Save this article

A Review and Analysis of Rangeland and Wildland Soil Health

Author

Listed:
  • Stephen E. Williams

    (Department of Ecosystem Science & Management, College of Agriculture, Life Sciences & Natural Resources, University of Wyoming, Laramie, WY 82071, USA)

Abstract

Soil health is focused on intensively managed (IM) soils (often farmed soils), by-passing extensively managed (EM) soils (range lands, deserts, shrub lands, tundra). High economic value products are generated by IM systems. Many EM lands are of cultural, recreational, scenic, or scientific value. However, and despite the fact that they provide forage for domestic and wild animals, they are not always of high economic value. IM and EM soils are evaluated on the same health scales. The contention herein is all soils formed under soil state conditions under the absence of human interventions are inherently healthy. But a given soil has dynamic properties that determine its management as IM or EM. An EM sagebrush steppe soil may be deemed unhealthy as a result of low organic matter and short growing season. An IM grassland steppe soil is healthy as a result of high organic matter and a long growing season. The sagebrush soil, however, provides habitat for culturally important sage grouse. The grassland soil may provide, when plowed, habitat for economically important soybeans. Soil taxonomies can be used to establish inherent health of undisturbed soils. Determining a soil’s dynamic nature is a different construct. Here, four different sets of EM soils were evaluated to showcase their diversity, evaluate levels of health and display their often-unconventional dynamic characteristics. An argument is made that a soil’s health, an inherent condition, is not the same as its dynamic condition (potential to produce goods and services). Soil health changes are usually slowly driven by soil state factors but can be dramatically changed by humans. Otherwise, soil health can be viewed as a near constant ecosystem attribute. The dynamic nature of soils change according to needs placed by humans. EM soils may be healthy but lack attention since their dynamic nature is not traditional and often of low economic value. Evaluation of soil health and dynamic value on EM lands is often exacerbated by information absence. Strategies to circumvent this include sampling design, reference sites and standardized ways of EM soil health determination. A case is made that baselines of soil health can be taken from soil surveys, taxonomic names, and soil data from map units, where such information exists. Certified supplementary information is ambiguously available, but may be crucial. Outdoor living laboratories that feature inherent soil health and dynamic soil alternatives may help circumvent information voids.

Suggested Citation

  • Stephen E. Williams, 2024. "A Review and Analysis of Rangeland and Wildland Soil Health," Sustainability, MDPI, vol. 16(7), pages 1-39, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2867-:d:1366621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gail Whiteman & Chris Hope & Peter Wadhams, 2013. "Vast costs of Arctic change," Nature, Nature, vol. 499(7459), pages 401-403, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louise Kessler, 2015. "Estimating the economic impact of the permafrost carbon feedback," GRI Working Papers 219, Grantham Research Institute on Climate Change and the Environment.
    2. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    3. Villo, Sofia & Halme, Minna & Ritvala, Tiina, 2020. "Theorizing MNE-NGO conflicts in state-capitalist contexts: Insights from the Greenpeace, Gazprom and the Russian state dispute in the Arctic," Journal of World Business, Elsevier, vol. 55(3).
    4. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    5. Oliver D. Bettis & Simon Dietz & Nick G. Silver, 2017. "The risk of climate ruin," Climatic Change, Springer, vol. 140(2), pages 109-118, January.
    6. Adebayo, Tomiwa Sunday & Onifade, Stephen Taiwo & Alola, Andrew Adewale & Muoneke, Obumneke Bob, 2022. "Does it take international integration of natural resources to ascend the ladder of environmental quality in the newly industrialized countries?," Resources Policy, Elsevier, vol. 76(C).
    7. William Brock & Anastasios Xepapadeas, 2019. "Regional Climate Change Policy Under Positive Feedbacks and Strategic Interactions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 51-75, January.
    8. Louise Kessler, 2017. "Estimating The Economic Impact Of The Permafrost Carbon Feedback," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-23, May.
    9. Fisher, A. C & Le, P. V, 2014. "Climate Policy: Science, Economics, and Extremes," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6tj3j4jb, Department of Agricultural & Resource Economics, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2867-:d:1366621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.