IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1752-d1342762.html
   My bibliography  Save this article

Impact of Structural and Non-Structural Measures on the Risk of Flash Floods in Arid and Semi-Arid Regions: A Case Study of the Gash River, Kassala, Eastern Sudan

Author

Listed:
  • Kamal Abdelrahim Mohamed Shuka

    (Institute of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Ke Wang

    (Institute of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Ghali Abdullahi Abubakar

    (Institute of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Tianyue Xu

    (Institute of Agricultural Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

Abstract

Sediment precipitation in riverbeds influences the effectiveness of structural and non-structural measures for flash flood mitigation and increases the potential for flooding. This study aimed to disclose the effectiveness of the implemented measures for flood risk mitigation in Kassala town, eastern Sudan. We employed remote sensing (RS) and GIS techniques to determine the change in the Gash River riverbed, the morphology, and the leveling of both the eastern and western sides of the river. Flood model simulation and a 3D path profile were generated using the digital elevation model (DEM) with a data resolution of 12.5 m from the ALOS BILSAR satellite. The main purpose of this study is to extract the layer of elevation of the riverbed on both the western and eastern banks and to determine the variations and their relationship to flood occurrence and mitigation. The construction of dikes and spurs near Kassala town has led to sediment precipitation, causing the riverbed to rise. The results show that it is now 1.5 m above the eastern Kassala town level, with a steep slope of 2 m/km, and the cross-section area at Kassala bridge has shrunk, which indicates that the bridge body will partially impede the river’s high discharge and increase the potential for flood risk in the study area. The eastern part of Kassala town has a higher likelihood of flooding than the western side. This study suggests redesigning structural measures like widening the Gash River, extending Kassala bridge for normal water flow, strengthening early warning systems, and implementing soil conservation activities for normal water flow.

Suggested Citation

  • Kamal Abdelrahim Mohamed Shuka & Ke Wang & Ghali Abdullahi Abubakar & Tianyue Xu, 2024. "Impact of Structural and Non-Structural Measures on the Risk of Flash Floods in Arid and Semi-Arid Regions: A Case Study of the Gash River, Kassala, Eastern Sudan," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1752-:d:1342762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deepak Singh Bisht & Chandranath Chatterjee & Shivani Kalakoti & Pawan Upadhyay & Manaswinee Sahoo & Ambarnil Panda, 2016. "Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 749-776, November.
    2. Zhipan Niu & Yi Long & Chuke Meng & Hang Yang & Yihan Luo & Weiyang Zhao, 2023. "Impact Pressure Influence of Flood on Bridge Deck under Sediment Deposition Conditions: An Experimental Study," Sustainability, MDPI, vol. 15(18), pages 1-12, September.
    3. Mir Khursheed Alam & Shyamasree Dasgupta & Anamika Barua & N. H. Ravindranath, 2022. "Assessing climate-relevant vulnerability of the Indian Himalayan Region (IHR): a district-level analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1395-1421, June.
    4. Fadul, E. & Masih, I. & De Fraiture, C., 2019. "Adaptation strategies to cope with low, high and untimely floods: Lessons from the Gash spate irrigation system, Sudan," Agricultural Water Management, Elsevier, vol. 217(C), pages 212-225.
    5. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    6. Mingyang Liu & Suiju Lv & Qiao Qiao & Lulu Song, 2023. "Design and Numerical Simulation of the Headworks in the Shizuishan Section of the Yellow River," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    7. Sheng-Chi Yang & Tsun-Hua Yang & Ya-Chi Chang & Cheng-Hsin Chen & Mei-Ying Lin & Jui-Yi Ho & Kwan Tun Lee, 2020. "Development of a Hydrological Ensemble Prediction System to Assist with Decision-Making for Floods during Typhoons," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    8. Masumeh Ashgevar Heydari & Seyed Hamidreza Sadeghi & Atefeh Jafarpoor, 2023. "Hydrological Properties of Rill Erosion on a Soil from a Drought-Prone Area during Successive Rainfalls as a Result of Microorganism Inoculation," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    9. Amarnath, Giriraj & Simons, G. W. H. & Alahacoon, Niranga & Smakhtin, V. & Sharma, Bharat & Gismalla, Y. & Mohammed, Y. & Andrie, M. C. M., 2018. "Using smart ICT to provide weather and water information to smallholders in Africa: the case of the Gash River Basin, Sudan," Papers published in Journals (Open Access), International Water Management Institute, pages 22:52-66.
    10. Sunita Verma & Ajay Sharma & Pramod Kumar Yadava & Priyanshu Gupta & Janhavi Singh & Swagata Payra, 2022. "Rapid flash flood calamity in Chamoli, Uttarakhand region during Feb 2021: an analysis based on satellite data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1379-1393, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Gao & Wei Gao & Nan Ke, 2021. "Assessing the impact of flood inundation dynamics on an urban environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1047-1072, October.
    2. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    3. Sivadasan, Jagadeesh & Xu, Wenjian, 2021. "Missing women in India: Gender-specific effects of early-life rainfall shocks," World Development, Elsevier, vol. 148(C).
    4. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    5. Seon Woo Kim & Soon Ho Kwon & Donghwi Jung, 2022. "Development of a Multiobjective Automatic Parameter-Calibration Framework for Urban Drainage Systems," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    6. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    7. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    8. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    9. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    10. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    11. S. Mosquera-Machado & Sajjad Ahmad, 2007. "Flood hazard assessment of Atrato River in Colombia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 591-609, March.
    12. Helen Boon, 2014. "Disaster resilience in a flood-impacted rural Australian town," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 683-701, March.
    13. Wim Kellens & Ruud Zaalberg & Tijs Neutens & Wouter Vanneuville & Philippe De Maeyer, 2011. "An Analysis of the Public Perception of Flood Risk on the Belgian Coast," Risk Analysis, John Wiley & Sons, vol. 31(7), pages 1055-1068, July.
    14. Yashar Dadrasajirlou & Hojat Karami & Seyedali Mirjalili, 2023. "Using AHP-PROMOTHEE for Selection of Best Low-Impact Development Designs for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 375-402, January.
    15. Roland Azibo Balgah & Kester Azibo Ngwa & Gertrud Rosa Buchenrieder & Jude Ndzifon Kimengsi, 2023. "Impacts of Floods on Agriculture-Dependent Livelihoods in Sub-Saharan Africa: An Assessment from Multiple Geo-Ecological Zones," Land, MDPI, vol. 12(2), pages 1-18, January.
    16. Andrew Onwuemele, 2018. "Public Perception of Flood Risks and Disaster Preparedness in Lagos Megacity, Nigeria," Academic Journal of Interdisciplinary Studies, Richtmann Publishing Ltd, vol. 7, November.
    17. Richard Franklin & Jemma King & Peter Aitken & Peter Leggat, 2014. "“Washed away”—assessing community perceptions of flooding and prevention strategies: a North Queensland example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1977-1998, September.
    18. Linhan Yang & Jianzhu Li & Aiqing Kang & Shuai Li & Ping Feng, 2020. "The Effect of Nonstationarity in Rainfall on Urban Flooding Based on Coupling SWMM and MIKE21," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1535-1551, March.
    19. Pradeep Rawat & Prakash Tiwari & Charu Pant, 2012. "Geo-hydrological database modeling for integrated multiple hazards and risk assessment in Lesser Himalaya: a GIS-based case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1233-1260, July.
    20. Cailin Li & Na Sun & Yihui Lu & Baoyun Guo & Yue Wang & Xiaokai Sun & Yukai Yao, 2022. "Review on Urban Flood Risk Assessment," Sustainability, MDPI, vol. 15(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1752-:d:1342762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.