Integrating Firefly and Crow Algorithms for the Resilient Sizing and Siting of Renewable Distributed Generation Systems under Faulty Scenarios
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
- Zangiabadi, Mansoureh & Feuillet, Rene & Lesani, Hamid & Hadj-Said, Nouredine & Kvaløy, Jan T., 2011. "Assessing the performance and benefits of customer distributed generation developers under uncertainties," Energy, Elsevier, vol. 36(3), pages 1703-1712.
- Soroudi, Alireza & Ehsan, Mehdi, 2010. "A distribution network expansion planning model considering distributed generation options and techo-economical issues," Energy, Elsevier, vol. 35(8), pages 3364-3374.
- Abdulaziz Alanazi & Tarek I. Alanazi, 2023. "Multi-Objective Framework for Optimal Placement of Distributed Generations and Switches in Reconfigurable Distribution Networks: An Improved Particle Swarm Optimization Approach," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
- Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
- Ahmadigorji, Masoud & Amjady, Nima, 2016. "A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm," Energy, Elsevier, vol. 102(C), pages 199-215.
- José A. G. Cararo & João Caetano Neto & Wagner A. Vilela Júnior & Márcio R. C. Reis & Gabriel A. Wainer & Paulo V. dos Santos & Wesley P. Calixto, 2021. "Spatial Model of Optimization Applied in the Distributed Generation Photovoltaic to Adjust Voltage Levels," Energies, MDPI, vol. 14(22), pages 1-37, November.
- Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
- Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018.
"The economic impact of electricity losses,"
Energy Economics, Elsevier, vol. 75(C), pages 309-322.
- Maria Teresa Costa-Campi & Daniel Daví-Arderius & Elisa Trujillo-Baute, 2016. "The economic impact of electricity losses," Working Papers 2016/4, Institut d'Economia de Barcelona (IEB).
- Xiaohua Song & Yun Long & Zhongfu Tan & Xubei Zhang & Leming Li, 2016. "The Optimization of Distributed Photovoltaic Comprehensive Efficiency Based on the Construction of Regional Integrated Energy Management System in China," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
- Hung, Duong Quoc & Mithulananthan, N., 2014. "Loss reduction and loadability enhancement with DG: A dual-index analytical approach," Applied Energy, Elsevier, vol. 115(C), pages 233-241.
- Samson Oladayo Ayanlade & Funso Kehinde Ariyo & Abdulrasaq Jimoh & Kayode Timothy Akindeji & Adeleye Oluwaseye Adetunji & Emmanuel Idowu Ogunwole & Dolapo Eniola Owolabi, 2023. "Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
- Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
- Kong, Xiangrui & Xu, Xiaoyuan & Yan, Zheng & Chen, Sijie & Yang, Huoming & Han, Dong, 2018. "Deep learning hybrid method for islanding detection in distributed generation," Applied Energy, Elsevier, vol. 210(C), pages 776-785.
- Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
- Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
- Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
- Wang, Beibei & Chen, Li & Wang, Jiale & Zhao, Shengnan, 2022. "Microgrid distributed energy resources planning based on a long-term dynamic microsimulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 236-253.
- Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
- Canizes, Bruno & Soares, João & Vale, Zita & Khodr, H.M., 2012. "Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems," Energy, Elsevier, vol. 45(1), pages 1007-1017.
- Singh, Bindeshwar & Pal, Charitra & Mukherjee, V. & Tiwari, Prabhakar & Yadav, Manish Kumar, 2017. "Distributed generation planning from power system performances viewpoints: A taxonomical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1472-1492.
- Simpson, Genevieve, 2017. "Network operators and the transition to decentralised electricity: An Australian socio-technical case study," Energy Policy, Elsevier, vol. 110(C), pages 422-433.
- Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
More about this item
Keywords
renewable distributed generations; N-1 contingency; system reliability and quality; IEEE 30-bus power system; optimal power flow; firefly and crow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1521-:d:1337260. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.