IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1382-d1334622.html
   My bibliography  Save this article

The Use of Chlorella species to Remove Nutrients from Dairy Wastewater to Produce Livestock Feed

Author

Listed:
  • Siane C. Luzzi

    (Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA)

  • Robert G. Gardner

    (Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA)

  • Bradley J. Heins

    (Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA)

Abstract

The goal of the study was to utilize Chlorella sp. to recycle nutrients from a dairy wastewater lagoon producing microalgae biomass for dairy cattle. Chlorella sp. was cultured in mixotrophic conditions with various ratios of raw dairy wastewater with a lab-scale (1.25 L) environment and a pilot-scale (70 L) environment. The influence of extra CO 2 , pH, temperature, solar radiation, and photosynthetic active radiation were tested for cell growth, biomass productivity and nutrient (ammonium, nitrate, and phosphate) removal from wastewater. The objective of this study was to determine the alternative ratios (control, 1:10, 1:20, 1:30, or 1:40) of dairy wastewater, where Chlorella sp. biomass could be produced to remove nutrients. Additionally, the study evaluated the addition of CO 2 into the cultivation system to increase biomass yield. During the first experiment, the lab-scale and pilot-scale experiments showed similar biomass growth after seven days of growth. The control had the highest biomass, followed by 1:10. For the pilot-scale experiment, the treatments (control, controlN, 1:10, 1:10 N, 1:30, and 1:30 N) were different from each other for nutrient removal rates and biomass production. The bioreactors designed for this study may be used on farms to recycle dairy wastewater and produce enriched biomass for use to feed livestock.

Suggested Citation

  • Siane C. Luzzi & Robert G. Gardner & Bradley J. Heins, 2024. "The Use of Chlorella species to Remove Nutrients from Dairy Wastewater to Produce Livestock Feed," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1382-:d:1334622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    2. Bindra, Sunny & Kulshrestha, Saurabh, 2019. "Converting waste to energy: Production and characterization of biodiesel from Chlorella pyrenoidosa grown in a medium designed from waste," Renewable Energy, Elsevier, vol. 142(C), pages 415-425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    2. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    3. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    4. Ding, Lingkan & Chan Gutierrez, Enrique & Cheng, Jun & Xia, Ao & O'Shea, Richard & Guneratnam, Amita Jacob & Murphy, Jerry D., 2018. "Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate," Energy, Elsevier, vol. 151(C), pages 760-770.
    5. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    6. Russell, Callum & Rodriguez, Cristina, 2023. "Lipid extraction from Chlorella vulgaris & Haematococcus pluvialis using the switchable solvent DMCHA for biofuel production," Energy, Elsevier, vol. 278(PB).
    7. Ortigueira, Joana & Pinto, Tiago & Gouveia, Luísa & Moura, Patrícia, 2015. "Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum," Energy, Elsevier, vol. 88(C), pages 528-536.
    8. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    9. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    10. Pankratz, Stan & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2017. "Algae production platforms for Canada's northern climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 109-120.
    11. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    12. Mohammed Omar Faruque & Mohammad Mozahar Hossain & Wasif Farooq & Shaikh Abdur Razzak, 2023. "Phototrophic Bioremediation of Municipal Tertiary Wastewater Coupling with Lipid Biosynthesis Using Scenedesmus dimorphus : Effect of Nitrogen to Phosphorous Ratio with/without CO 2 Supplementation," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    13. Anahas, Antonyraj Matharasi Perianaika & Muralitharan, Gangatharan, 2019. "Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production," Renewable Energy, Elsevier, vol. 130(C), pages 749-761.
    14. Cheng, Jun & Feng, Jia & Sun, Jing & Huang, Yun & Zhou, Junhu & Cen, Kefa, 2014. "Enhancing the lipid content of the diatom Nitzschia sp. by 60Co-γ irradiation mutation and high-salinity domestication," Energy, Elsevier, vol. 78(C), pages 9-15.
    15. Qianrong Jiang & Honglei Chen & Zeding Fu & Xiaohua Fu & Jiacheng Wang & Yingqi Liang & Hailong Yin & Junbo Yang & Jie Jiang & Xinxin Yang & He Wang & Zhiming Liu & Rongkui Su, 2022. "Current Progress, Challenges and Perspectives in the Microalgal-Bacterial Aerobic Granular Sludge Process: A Review," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    16. Khanzada, Zareen T. & Övez, Süleyman, 2017. "Microalgae as a sustainable biological system for improving leachate quality," Energy, Elsevier, vol. 140(P1), pages 757-765.
    17. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.
    18. Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Fermoso, Javier & Orsini, Alessandro & Sanna, Aimaro & Pettinau, Alberto, 2021. "Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion," Energy, Elsevier, vol. 217(C).
    19. Esakkimuthu, Sivakumar & Krishnamurthy, Venkatesan & Wang, Shuang & Hu, Xun & K, Swaminathan & Abomohra, Abd El-Fatah, 2020. "Application of p-coumaric acid for extraordinary lipid production in Tetradesmus obliquus: A sustainable approach towards enhanced biodiesel production," Renewable Energy, Elsevier, vol. 157(C), pages 368-376.
    20. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1382-:d:1334622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.