IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p958-d1324537.html
   My bibliography  Save this article

Investigating the Technical Reuse Potential of Crystalline Photovoltaic Modules with Regard to a Recycling Alternative

Author

Listed:
  • Anna Katharina Schnatmann

    (Institute for Technical Energy Systems (ITES), Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany)

  • Tobi Reimers

    (Faculty of Engineering and Mathematics, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany)

  • Erik Hüdepohl

    (Faculty of Engineering and Mathematics, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany)

  • Jonah Umlauf

    (Faculty of Engineering and Mathematics, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany)

  • Pia Kleinebekel

    (Faculty of Engineering and Mathematics, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany)

  • Fabian Schoden

    (Institute for Technical Energy Systems (ITES), Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany)

  • Eva Schwenzfeier-Hellkamp

    (Institute for Technical Energy Systems (ITES), Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany)

Abstract

Photovoltaics (PV) is a key pillar of renewable energy supply. However, the climate and resource crisis make it necessary to implement further optimizations toward a circular economy in the PV industry. One strategy for saving resources and lowering carbon dioxide emissions is the reuse of modules (second-life PV). As part of this work, various tests were carried out with crystalline modules from two different manufacturers. The modules had already been transported to a recycling company and were originally intended for recycling. The measurements carried out provide a comprehensive assessment of the condition of the PV modules. In total, five different measurement methods were used, two of which related to short-term measurements under controlled laboratory conditions and three to long-term assessments under real conditions. The investigation illustrated that modules from the recycling company have potential for reuse. However, it also showed that a clearly differentiated classification system is necessary due to module age- and environmental conditions-related degradation. Qualification and further long-term measurements should be implemented using a combination of measurement methods.

Suggested Citation

  • Anna Katharina Schnatmann & Tobi Reimers & Erik Hüdepohl & Jonah Umlauf & Pia Kleinebekel & Fabian Schoden & Eva Schwenzfeier-Hellkamp, 2024. "Investigating the Technical Reuse Potential of Crystalline Photovoltaic Modules with Regard to a Recycling Alternative," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:958-:d:1324537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    2. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    2. Tina Wiegand & Martin Wynn, 2023. "Sustainability, the Circular Economy and Digitalisation in the German Textile and Clothing Industry," Sustainability, MDPI, vol. 15(11), pages 1-30, June.
    3. Abdulmajeed Almadhi & Abdelhakim Abdelhadi & Rakan Alyamani, 2023. "Moving from Linear to Circular Economy in Saudi Arabia: Life-Cycle Assessment on Plastic Waste Management," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    4. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    5. Jaroslaw Golebiewski & Josu Takala & Oskar Juszczyk & Nina Drejerska, 2019. "Local contribution to circular economy. A case study of a Polish rural municipality," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 771-791.
    6. Franco Fassio & Chiara Chirilli, 2023. "The Circular Economy and the Food System: A Review of Principal Measuring Tools," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    7. Florian Fizaine, 2021. "La croissance verte est-elle durable et compatible avec l’économie circulaire ? Une approche par l’identité IPAT," Post-Print hal-03884377, HAL.
    8. Vibeke Grupe Larsen & Valentina Antoniucci & Nicola Tollin & Peter Andreas Sattrup & Krister Jens & Morten Birkved & Tine Holmboe & Giuliano Marella, 2023. "A Methodological Framework to Foster Social Value Creation in Architectural Practice," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    9. Marina Cavalieri & Paolo Lorenzo Ferrara & Claudio Finocchiaro & Marco Ferdinando Martorana, 2024. "An Economic Analysis of the Use of Local Natural Waste: Volcanic Ash of Mt. Etna Volcano (Italy) for Geopolymer Production," Sustainability, MDPI, vol. 16(2), pages 1-14, January.
    10. Amir Latif & Martha Fani Cahyandito & Gemilang Lara Utama, 2023. "Circular Economy Concept at the Micro-Level: A Case Study of Taruna Mukti Farmer Group, Bandung Regency, West Java, Indonesia," Agriculture, MDPI, vol. 13(3), pages 1-14, February.
    11. Ahmad, Farhan & Bask, Anu & Laari, Sini & Robinson, Craig V., 2023. "Business management perspectives on the circular economy: Present state and future directions," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    12. Leonidas Milios, 2021. "Towards a Circular Economy Taxation Framework: Expectations and Challenges of Implementation," Circular Economy and Sustainability,, Springer.
    13. Marit Moe Bjørnbet & Sigurd Sagen Vildåsen, 2021. "Life Cycle Assessment to Ensure Sustainability of Circular Business Models in Manufacturing," Sustainability, MDPI, vol. 13(19), pages 1-13, October.
    14. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.
    15. Gianmarco Bressanelli & Federico Adrodegari & Daniela C. A. Pigosso & Vinit Parida, 2022. "Towards the Smart Circular Economy Paradigm: A Definition, Conceptualization, and Research Agenda," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    16. Philip Krummeck & Yagmur Damla Dokur & Daniel Braun & Steffen Kiemel & Robert Miehe, 2022. "Designing Component Interfaces for the Circular Economy—A Case Study for Product-As-A-Service Business Models in the Automotive Industry," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    17. Neves, Sónia Almeida & Marques, António Cardoso & de Sá Lopes, Leonardo Batista, 2024. "Is environmental regulation keeping e-waste under control? Evidence from e-waste exports in the European Union," Ecological Economics, Elsevier, vol. 216(C).
    18. Ivan Deviatkin & Sanna Rousu & Malahat Ghoreishi & Mohammad Naji Nassajfar & Mika Horttanainen & Ville Leminen, 2022. "Implementation of Circular Economy Strategies within the Electronics Sector: Insights from Finnish Companies," Sustainability, MDPI, vol. 14(6), pages 1-11, March.
    19. Mariana Oliveira & Mécia Miguel & Sven Kevin Langen & Amos Ncube & Amalia Zucaro & Gabriella Fiorentino & Renato Passaro & Remo Santagata & Nick Coleman & Benjamin H. Lowe & Sergio Ulgiati & Andrea Ge, 2021. "Circular Economy and the Transition to a Sustainable Society: Integrated Assessment Methods for a New Paradigm," Circular Economy and Sustainability,, Springer.
    20. Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:958-:d:1324537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.