IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8363-d1486112.html
   My bibliography  Save this article

Assessment of the Spatio-Temporal Dynamics in Urban Green Space via Intensity Analysis and Landscape Pattern Indices: A Case Study of Taiyuan, China

Author

Listed:
  • Yang Liu

    (Faculty of Design and Architecture, Department of Landscape Architecture, Universiti Putra Malaysia, Serdang 43400, Malaysia
    Department of Design and Art, Taiyuan Institute of Technology, Taiyuan 030008, China)

  • Mohd Johari Mohd Yusof

    (Faculty of Design and Architecture, Department of Landscape Architecture, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Balqis Mohamed Rehan

    (Faculty of Engineering, Department of Civil Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Junainah Abu Kasim

    (Kuala Lumpur City Hall, Kuala Lumpur 50350, Malaysia)

Abstract

Urban green space (UGS) is a crucial physical area that supports the functioning of urban ecosystems, and its changes affect urban ecological balance. In order to accurately analyze the dynamic processes and transfer targets of UGS during urbanization, this study proposes a new method of UGS assessment based on multi-temporal Landsat remote sensing data. This method is integrated with intensity analysis and landscape pattern indices so as to explore the spatio-temporal dynamics of the evolution process, landscape pattern, and driving forces of UGS from 2000 to 2022 in the resource-based city of Taiyuan in central China. The results of the case study show that rapid urbanization brought about a continuous reduction in UGS in the study area, but the trend of decreasing gradually slowed down; UGS patches have become more dispersed and isolated, bare land has been targeted for both gains and losses of UGS, and ecological restoration of bare land mitigated the rapid reduction of UGS. The results of this study not only confirm the applicability of this methodology for monitoring and assessing the evolution of UGS, but also reveal the identification of the targeting or avoidance of other categories during the conversion of UGS. Thus, the potential factors influencing changes in UGS can be analyzed to guide and safeguard sustainable development.

Suggested Citation

  • Yang Liu & Mohd Johari Mohd Yusof & Balqis Mohamed Rehan & Junainah Abu Kasim, 2024. "Assessment of the Spatio-Temporal Dynamics in Urban Green Space via Intensity Analysis and Landscape Pattern Indices: A Case Study of Taiyuan, China," Sustainability, MDPI, vol. 16(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8363-:d:1486112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Zhen & Chen, Ruishan & Meadows, Michael E. & Sengupta, Dhritiraj & Xu, Di, 2019. "Changing urban green spaces in Shanghai: trends, drivers and policy implications," Land Use Policy, Elsevier, vol. 87(C).
    2. Xu, Hongtao & Song, Youcheng & Tian, Yi, 2022. "Simulation of land-use pattern evolution in hilly mountainous areas of North China: A case study in Jincheng," Land Use Policy, Elsevier, vol. 112(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaoyao Zhu & Gabriel Hoh Teck Ling, 2022. "A Systematic Review of Morphological Transformation of Urban Open Spaces: Drivers, Trends, and Methods," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    2. Ming Zhang & Xiaojie Liu & Dan Yan, 2023. "Land Use Conflicts Assessment in Xiamen, China under Multiple Scenarios," Land, MDPI, vol. 12(2), pages 1-16, February.
    3. Tabassum Naz, 2023. "Geospatial Analysis of Land Fragmentation and Its Impactson Land Use of District Peshawar, Pakistan," International Journal of Innovations in Science & Technology, 50sea, vol. 5(3), pages 252-269, September.
    4. Lesong Zhao & Guangsheng Liu & Chunlong Xian & Jiaqi Nie & Yao Xiao & Zhigang Zhou & Xiting Li & Hongmei Wang, 2022. "Simulation of Land Use Pattern Based on Land Ecological Security: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 19(15), pages 1-20, July.
    5. Nordström, Jonas & Hammarlund, Cecilia, 2021. "You win some, you lose some - compensating the loss of green space in cities taking heterogeneous population characteristics into consideration," AgriFood-WP 2021:3, Lund University, AgriFood Economics Centre.
    6. Yanqi Zhao & Yue Zhang & Ying Yang & Fan Li & Rongkun Dai & Jianlin Li & Mingshi Wang & Zhenhua Li, 2023. "The Impact of Land Use Structure Change on Utilization Performance in Henan Province, China," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    7. Haitao Ji & Xiaoshun Li & Yiwei Geng & Xin Chen & Yuexiang Wang & Jumei Cheng & Zhuang Chen, 2023. "Delineation of Urban Development Boundary and Carbon Emission Effects in Xuzhou City, China," Land, MDPI, vol. 12(9), pages 1-16, September.
    8. Yue Wu & Zexu Han & Auwalu Faisal Koko & Siyuan Zhang & Nan Ding & Jiayang Luo, 2022. "Analyzing the Spatio-Temporal Dynamics of Urban Land Use Expansion and Its Influencing Factors in Zhejiang Province, China," IJERPH, MDPI, vol. 19(24), pages 1-24, December.
    9. Huimin Wang & Canrui Lin & Sihua Ou & Qianying Feng & Kui Guo & Xiaojian Wei & Jiazhou Xie, 2024. "Multilevel Change of Urban Green Space and Spatiotemporal Heterogeneity Analysis of Driving Factors," Sustainability, MDPI, vol. 16(11), pages 1-20, June.
    10. Mengjing Wang & Walter Timo de Vries & Wanchen Sang & Haijun Bao & Yuefeng Lyu & Sheng Liu, 2025. "A Method for Delineating Urban Development Boundaries Based on the Urban–Rural Integration Perspective," Land, MDPI, vol. 14(4), pages 1-25, April.
    11. Noé Villegas Flores & Yelinca Saldeño Madero & Camilo Alberto Torres Parra & Isidoro Fasolino & Hugo Alexander Rondón Quintana, 2021. "Multi-Criteria Approach for Prioritizing and Managing Public Investment in Urban Spaces. A Case Study in the Triple Frontier," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    12. Runjia Yang & Sha Chen & Yanmei Ye, 2024. "Toward potential area identification for land consolidation and ecological restoration: an integrated framework via land use optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 3127-3146, February.
    13. Siqi Liu & Qing Yu & Chen Wei, 2019. "Spatial-Temporal Dynamic Analysis of Land Use and Landscape Pattern in Guangzhou, China: Exploring the Driving Forces from an Urban Sustainability Perspective," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    14. Zakharov, Konstantin & Mizgajski, Andrzej, 2024. "Socioeconomic and political settings for the land development decreasing urban green. Inside view from Moscow," Land Use Policy, Elsevier, vol. 141(C).
    15. Weiwei Zhang & Jigang Han & Abiot Molla & Shudi Zuo & Yin Ren, 2021. "The Optimization Strategy of the Existing Urban Green Space Soil Monitoring System in Shanghai, China," IJERPH, MDPI, vol. 18(9), pages 1-14, April.
    16. Jiangxi Chen & Siyu Shao & Yifei Zhu & Yu Wang & Fujie Rao & Xilei Dai & Dayi Lai, 2022. "Enhanced Automatic Identification of Urban Community Green Space Based on Semantic Segmentation," Land, MDPI, vol. 11(6), pages 1-21, June.
    17. Yishao Shi & Danxuan Liu, 2020. "Relationship between Urban New Business Indexes and the Business Environment of Chinese Cities: A Study Based on Entropy-TOPSIS and a Gaussian Process Regression Model," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    18. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    19. Yaqi Cheng & Wei Song & Hao Yu & Xi Wei & Shuangqing Sheng & Bo Liu & He Gao & Junfang Li & Congjie Cao & Dazhi Yang, 2023. "Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China," Land, MDPI, vol. 12(4), pages 1-21, April.
    20. Michèle Pezzagno & Barbara M. Frigione & Carla S. S. Ferreira, 2021. "Reading Urban Green Morphology to Enhance Urban Resilience: A Case Study of Six Southern European Cities," Sustainability, MDPI, vol. 13(16), pages 1-16, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8363-:d:1486112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.