IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7178-d1460869.html
   My bibliography  Save this article

Selected Chemical Parameters of Cereal Grain Influencing the Development of Rhyzopertha dominica F

Author

Listed:
  • Emilia Ludwiczak

    (Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Mariusz Nietupski

    (Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Beata Gabryś

    (Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland)

  • Cezary Purwin

    (Department of Animal Nutrition and Forage Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Bożena Kordan

    (Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

Abstract

The increasing food crisis in times of ecological threats has challenged conventional agriculture to transform into a more efficient and sustainable agri-food system. The global priority of these activities has become, among others, the responsible and effective use of already produced food. This study aimed to assess the impact of the natural resistance of cereal grains to consumption by storage pests. The study presented here analyzed the impact of selected chemical factors from the grain of six species of cereals (wheat, triticale, rye, barley, oat, corn) on the development of one of the most dangerous storage pests—the lesser grain borer Rhyzopertha dominica F. The increased development of this beetle on the tested grain was determined based on the number of progeny, the mass of dust produced, and the loss of grain mass. Moreover, the correlations between the above-mentioned development parameters of the pest and the content in the grain of dry matter, crude ash, total protein, crude fat, starch, and water-soluble carbohydrates (WSCs) were examined. The results showed that the tested pest developed most intensively on barley and triticale grains and was least abundant on oat and corn grains. Chemical analysis of the selected grain showed that the low number of the R. dominica progeny population was correlated with a higher crude fat content and a lower total protein content in the cereal grain, and therefore, these chemical properties could affect the development of the pest. Knowledge of these relationships can be used in cereal breeding programs and when recommending cereals for more extended storage. This directly translates into improved local and global nutritional and food security. Moreover, it may also contribute to the reduction of pesticide use at the storage stage, which is one of the basic requirements for agricultural production in a sustainable agriculture system.

Suggested Citation

  • Emilia Ludwiczak & Mariusz Nietupski & Beata Gabryś & Cezary Purwin & Bożena Kordan, 2024. "Selected Chemical Parameters of Cereal Grain Influencing the Development of Rhyzopertha dominica F," Sustainability, MDPI, vol. 16(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7178-:d:1460869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuzana Kučerová & Radek Aulický & Václav Stejskal, 2005. "Outdoor occurrence of stored-product pests (Coleoptera) in the vicinity of a grain store - Short communication," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 41(2), pages 86-89.
    2. Pilar Campoy-Muñoz & Manuel Alejandro Cardenete & María del Carmen Delgado & Ferran Sancho, 2021. "Food Losses and Waste: A Needed Assessment for Future Policies," IJERPH, MDPI, vol. 18(21), pages 1-11, November.
    3. Muyesaier Tudi & Huada Daniel Ruan & Li Wang & Jia Lyu & Ross Sadler & Des Connell & Cordia Chu & Dung Tri Phung, 2021. "Agriculture Development, Pesticide Application and Its Impact on the Environment," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    4. Bożena Kordan & Mariusz Nietupski & Emilia Ludwiczak & Beata Gabryś & Robert Cabaj, 2023. "Selected Cultivar-Specific Parameters of Wheat Grain as Factors Influencing Intensity of Development of Grain Weevil Sitophilus granarius (L.)," Agriculture, MDPI, vol. 13(8), pages 1-13, July.
    5. Yannis E. Doukas & Luca Salvati & Ioannis Vardopoulos, 2023. "Unraveling the European Agricultural Policy Sustainable Development Trajectory," Land, MDPI, vol. 12(9), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Pigłowski & Birutė Mockevičienė & Maria Śmiechowska, 2025. "Border Rejections Reported in the Rapid Alert System for Food and Feed (RASFF) in 2008–2023: Identification of Hazards and Overview of Their Potential Health Implications," Sustainability, MDPI, vol. 17(7), pages 1-28, March.
    2. Min Chen & Jie Zhang & Hongtao Wang & Lingyun Li & Meizhen Yin & Jie Shen & Shuo Yan & Baoyou Liu, 2024. "Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management," Agriculture, MDPI, vol. 14(7), pages 1-16, June.
    3. Jinping Li & Da Cheng & Juanjuan Huang & Jian Kang & Baohong Jin & Vojislav Novakovic & Yasong Sun, 2025. "Influence of Additives on Solar-Controlled Anaerobic and Aerobic Processes of Cow Manure and Tomato Waste," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
    4. Vidas Lekavičius & Viktorija Bobinaitė & Daina Kliaugaitė & Kristina Rimkūnaitė, 2023. "Socioeconomic Impacts of Food Waste Reduction in the European Union," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    5. Wanglin Ma & Hongyun Zheng & Amaka Nnaji, 2023. "Cooperative membership and adoption of green pest control practices: Insights from rice farmers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(3), pages 459-479, July.
    6. Carlos Nuévalos-Tello & Daniel Hernández-Torres & Santiago Sardinero-Roscales & Miriam Pajares-Guerra & Anna Chilton & Raimundo Jiménez-Ballesta, 2024. "Ecological Restoration Process of El Hito Saline Lagoon: Potential Biodiversity Gain in an Agro-Natural Environment," Land, MDPI, vol. 13(12), pages 1-21, November.
    7. Rombeallo, Intan Parumbuan & Jamil, Muhammad Hatta & Rukmana, Didi, . "Factors affecting farmers’ decision to join coffee producer cooperatives to improve their welfare," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 10(4).
    8. Inês Costa-Pereira & Ana A. R. M. Aguiar & Fernanda Delgado & Cristina A. Costa, 2024. "A Methodological Framework for Assessing the Agroecological Performance of Farms in Portugal: Integrating TAPE and ACT Approaches," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    9. Philbert Mperejekumana & Lei Shen & Shuai Zhong & Fabien Muhirwa & Assa Nsabiyeze & Jean Marie Vianney Nsigayehe & Anathalie Nyirarwasa, 2023. "Assessing the Capacity of the Water–Energy–Food Nexus in Enhancing Sustainable Agriculture and Food Security in Burundi," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
    10. Patricia Mussali-Galante & María Luisa Castrejón-Godínez & José Antonio Díaz-Soto & Ángela Patricia Vargas-Orozco & Héctor Miguel Quiroz-Medina & Efraín Tovar-Sánchez & Alexis Rodríguez, 2023. "Biobeds, a Microbial-Based Remediation System for the Effective Treatment of Pesticide Residues in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-25, June.
    11. Salvatore Privitera & Emanuele Cerruto & Giuseppe Manetto & Sebastian Lupica & David Nuyttens & Donald Dekeyser & Ingrid Zwertvaegher & Marconi Ribeiro Furtado Júnior & Beatriz Costalonga Vargas, 2024. "Comparison between Liquid Immersion, Laser Diffraction, PDPA, and Shadowgraphy in Assessing Droplet Size from Agricultural Nozzles," Agriculture, MDPI, vol. 14(7), pages 1-20, July.
    12. Kun Zeng & Xiong Duan & Bin Chen & Lanxi Jia, 2025. "Spatiotemporal Heterogeneity of Eco-Efficiency of Cultivated Land Use and Its Influencing Factors: Evidence from the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 17(7), pages 1-23, March.
    13. Shuang Zhang & Shaobo Liu & Qikang Zhong & Kai Zhu & Hongpeng Fu, 2024. "Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing," Land, MDPI, vol. 13(8), pages 1-24, August.
    14. Manoj Kaushal & Mary Atieno & Sylvanus Odjo & Frederick Baijukya & Yosef Gebrehawaryat & Carlo Fadda, 2025. "Nature-Positive Agriculture—A Way Forward Towards Resilient Agrifood Systems," Sustainability, MDPI, vol. 17(3), pages 1-25, January.
    15. Hossein Komasi & Amir Karbassi Yazdi & Mohammad Eskandari Sani & Yong Tan, 2024. "Assessing the Circular Economy in Regions of Chile by Using Multiple-Criteria Decision-Making (MCDM)," Sustainability, MDPI, vol. 17(1), pages 1-21, December.
    16. Zheng, Yanan & Goodhue, Rachael E., 2022. "Intensive or Extensive Margin Effects? Growers’ Responses to the Restriction of High-Volatile Organic Compound (VOC) Pesticide Products in the San Joaquin Valley, California," 2024 Annual Meeting, July 28-30, New Orleans, LA 322085, Agricultural and Applied Economics Association.
    17. Zahoor Ahmad Shah & Mushtaq Ahmad Dar & Eajaz Ahmad Dar & Chukwujekwu A. Obianefo & Arif Hussain Bhat & Mohammed Tauseef Ali & Mohamed El-Sharnouby & Mustafa Shukry & Hosny Kesba & Samy Sayed, 2022. "Sustainable Fruit Growing: An Analysis of Differences in Apple Productivity in the Indian State of Jammu and Kashmir," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    18. Ratana Sapbamrer & Jiraporn Chittrakul, 2022. "Determinants of Consumers’ Behavior in Reducing Pesticide Residues in Vegetables and Fruits, Northern Thailand," IJERPH, MDPI, vol. 19(20), pages 1-11, October.
    19. Bahromiddin Husenov & Siham Asaad & Hafiz Muminjanov & Larisa Garkava-Gustavsson & Eva Johansson, 2021. "Sustainable Wheat Production and Food Security of Domestic Wheat in Tajikistan: Implications of Seed Health and Protein Quality," IJERPH, MDPI, vol. 18(11), pages 1-20, May.
    20. Nicolae Istudor & Marius Constantin & Donatella Privitera & Raluca Ignat & Irina-Elena Petrescu & Cristian Teodor, 2025. "Systemic Competitiveness in the EU Cereal Value Chain: A Network Perspective for Policy Alignment," Land, MDPI, vol. 14(4), pages 1-31, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7178-:d:1460869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.