IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5743-d1429507.html
   My bibliography  Save this article

Integrating Building Information Modeling (BIM) and Life Cycle Cost Analysis (LCCA) to Evaluate the Economic Benefits of Designing Aging-In-Place Homes at the Conceptual Stage

Author

Listed:
  • Vafa Rostamiasl

    (Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Ahmad Jrade

    (Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

Abstract

This paper presents a methodology of integrating Building Information Modeling (BIM) and Life Cycle Cost Analysis (LCCA) to evaluate the economic implications of designing aging-in-place (AIP) homes at the conceptual stage. With the rising global aging population, there is a growing demand for housing tailored to elderly needs. This study emphasizes the importance of early design phases, offering a semi-automated model to estimate life cycle costs from design to disposal. The model enables comprehensive economic assessments, highlighting the long-term feasibility of design decisions by considering life cycle costs early in the process. Investing in accessible and universal design features upfront can lead to long-term savings by reducing the need for extensive future retrofits. The model allows for comparisons among different design alternatives, assessing the financial impact of features such as wider doorways, accessible bathrooms, and elevators. This study provides valuable insights for designers and homeowners, supporting efficient decision-making during the early design stages of AIP homes.

Suggested Citation

  • Vafa Rostamiasl & Ahmad Jrade, 2024. "Integrating Building Information Modeling (BIM) and Life Cycle Cost Analysis (LCCA) to Evaluate the Economic Benefits of Designing Aging-In-Place Homes at the Conceptual Stage," Sustainability, MDPI, vol. 16(13), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5743-:d:1429507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kovacic, Iva & Zoller, Veronika, 2015. "Building life cycle optimization tools for early design phases," Energy, Elsevier, vol. 92(P3), pages 409-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maher Abuhussain & Ahmad Baghdadi, 2024. "A Novel Framework for Estimation of the Maintenance and Operation Cost in Construction Projects: A Step Toward Sustainable Buildings," Sustainability, MDPI, vol. 16(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    2. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    3. Parul Bhyan & Bhavna Shrivastava & Nand Kumar, 2023. "Systematic literature review of life cycle sustainability assessment system for residential buildings: using bibliometric analysis 2000–2020," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 13637-13665, December.
    4. Caraiman Adrian-Cosmin, 2022. "Life Cycle Cost In The Built Environment In The Context Of Sustainable Development," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 298-318, August.
    5. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    6. Maximilian Weigert & Oleksandr Melnyk & Leopold Winkler & Jacqueline Raab, 2022. "Carbon Emissions of Construction Processes on Urban Construction Sites," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    7. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Development of a Streamlined Environmental Life Cycle Costing Model for Buildings in South Korea," Sustainability, MDPI, vol. 10(6), pages 1-15, May.
    8. Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2017. "Multi-Variable Optimization of Building Thermal Design Using Genetic Algorithms," Energies, MDPI, vol. 10(10), pages 1-20, October.
    9. Žigart, Maja & Kovačič Lukman, Rebeka & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Environmental impact assessment of building envelope components for low-rise buildings," Energy, Elsevier, vol. 163(C), pages 501-512.
    10. Karásek, Jiří & Pojar, Jan & Kaločai, Ladislav & Heralová, Renáta Schneiderová, 2018. "Cost optimum calculation of energy efficiency measures in the Czech Republic," Energy Policy, Elsevier, vol. 123(C), pages 155-166.
    11. Seungjun Roh & Sungho Tae, 2016. "Building Simplified Life Cycle CO 2 Emissions Assessment Tool (B‐SCAT) to Support Low‐Carbon Building Design in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    12. Caraiman Adrian-Cosmin & Dan Sorin & Pescari Simon, 2023. "Life Cycle Cost In The Built Environment, Actualization, Inflation And The Money Value Over Time," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 139-146, April.
    13. Patricia Schneider-Marin & Anne Winkelkotte & Werner Lang, 2022. "Integrating Environmental and Economic Perspectives in Building Design," Sustainability, MDPI, vol. 14(8), pages 1-27, April.
    14. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.
    15. Zhenmin Yuan & Guodong Ni & Linxiu Wang & Yaning Qiao & Chengshuang Sun & Na Xu & Wenshun Wang, 2020. "Research on the Barrier Analysis and Strength Measurement of a Prefabricated Building Design," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    16. Ghaffarianhoseini, Ali & Tookey, John & Ghaffarianhoseini, Amirhosein & Naismith, Nicola & Azhar, Salman & Efimova, Olia & Raahemifar, Kaamran, 2017. "Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1046-1053.
    17. Meysam Nazari & Mohamed Jebrane & Nasko Terziev, 2020. "Bio-Based Phase Change Materials Incorporated in Lignocellulose Matrix for Energy Storage in Buildings—A Review," Energies, MDPI, vol. 13(12), pages 1-25, June.
    18. Patricia Schneider-Marin & Hannes Harter & Konstantin Tkachuk & Werner Lang, 2020. "Uncertainty Analysis of Embedded Energy and Greenhouse Gas Emissions Using BIM in Early Design Stages," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    19. Mostavi, Ehsan & Asadi, Somayeh & Boussaa, Djamel, 2017. "Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction," Energy, Elsevier, vol. 121(C), pages 606-615.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5743-:d:1429507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.