IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4499-d1402078.html
   My bibliography  Save this article

Sustainability Meets Information Technologies: Recent Developments and Future Perspectives

Author

Listed:
  • Andrés Felipe Valderrama Pineda

    (Department of Sustainability and Planning, The Technical Faculty of IT and Design, Aalborg University, 2450 Copenhagen, Denmark)

  • Iva Ridjan Skov

    (Department of Sustainability and Planning, The Technical Faculty of IT and Design, Aalborg University, 2450 Copenhagen, Denmark)

  • Hanaa Dahy

    (Department of Sustainability and Planning, The Technical Faculty of IT and Design, Aalborg University, 2450 Copenhagen, Denmark)

  • Jamal Jokar Arsanjani

    (Department of Sustainability and Planning, The Technical Faculty of IT and Design, Aalborg University, 2450 Copenhagen, Denmark)

  • Ida Maria Bonnevie

    (Department of Sustainability and Planning, The Technical Faculty of IT and Design, Aalborg University, 2450 Copenhagen, Denmark)

  • Tom Børsen

    (Department of Sustainability and Planning, The Technical Faculty of IT and Design, Aalborg University, 2450 Copenhagen, Denmark)

  • Maurizio Teli

    (Department of Sustainability and Planning, The Technical Faculty of IT and Design, Aalborg University, 9000 Aalborg, Denmark)

Abstract

This article aims at addressing the future challenges in Sustainability and Information Technology (IT) by reversing the order of the conventional prioritization of social objectives and technology, and placing the aim first and the means second. In engineering and technology, historically, there has been greater focus on first developing the technologies (means) and then determining their potential (aim), and how to tame their unintended consequences. The greatest challenge confronting humanity in the coming decades is sustainability. Therefore, the question is how can IT design, develop, and assist in maintaining the ambitious, albeit difficult to grasp, sustainability agenda? This discussion is pertinent in order to avoid research programs and academic curriculum which dive into the intricacies of IT without viewing sustainability as a core value, which ultimately risks replicating the historical pattern that will generate even more unsustainability.

Suggested Citation

  • Andrés Felipe Valderrama Pineda & Iva Ridjan Skov & Hanaa Dahy & Jamal Jokar Arsanjani & Ida Maria Bonnevie & Tom Børsen & Maurizio Teli, 2024. "Sustainability Meets Information Technologies: Recent Developments and Future Perspectives," Sustainability, MDPI, vol. 16(11), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4499-:d:1402078
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frederik Seeup Hass & Jamal Jokar Arsanjani, 2021. "The Geography of the Covid-19 Pandemic: A Data-Driven Approach to Exploring Geographical Driving Forces," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
    2. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    3. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    4. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    2. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    4. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    5. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.
    6. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    7. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    8. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    9. Hermansen, Rune & Smith, Kevin & Thorsen, Jan Eric & Wang, Jiawei & Zong, Yi, 2022. "Model predictive control for a heat booster substation in ultra low temperature district heating systems," Energy, Elsevier, vol. 238(PA).
    10. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    11. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    12. Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).
    13. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    14. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    15. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    16. Kalina, Jacek, 2016. "Complex thermal energy conversion systems for efficient use of locally available biomass," Energy, Elsevier, vol. 110(C), pages 105-115.
    17. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    18. Yang, Xiaochen & Li, Hongwei & Svendsen, Svend, 2016. "Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating," Energy, Elsevier, vol. 109(C), pages 248-259.
    19. Meesenburg, Wiebke & Ommen, Torben & Elmegaard, Brian, 2018. "Dynamic exergoeconomic analysis of a heat pump system used for ancillary services in an integrated energy system," Energy, Elsevier, vol. 152(C), pages 154-165.
    20. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4499-:d:1402078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.