IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p3977-d1391457.html
   My bibliography  Save this article

Bayesian Network Analysis of Industrial Accident Risk for Fishers on Fishing Vessels Less Than 12 m in Length

Author

Listed:
  • Seung-Hyun Lee

    (Training Ship, Pukyong National University, Busan 48513, Republic of Korea)

  • Su-Hyung Kim

    (Training Ship, Pukyong National University, Busan 48513, Republic of Korea)

  • Kyung-Jin Ryu

    (Division of Marine Production System Management, Pukyong National University, Busan 48513, Republic of Korea)

  • Yoo-Won Lee

    (Division of Marine Production System Management, Pukyong National University, Busan 48513, Republic of Korea)

Abstract

The Marine Stewardship Council estimates that approximately 38 million people worldwide work in fisheries, and more than one-third of the global population is dependent on aquatic products for protein, highlighting the importance of sustainable fisheries. The FISH Safety Foundation reports that 300 fishers die every day. To achieve sustainable fisheries as a primary industry, the safety of human resources is of the utmost importance. The International Maritime Organization (IMO) and the International Labor Organization (ILO) have made efforts towards this goal, including the issuance of agreements and guidelines to reduce industrial accidents among fishing vessel workers. The criterion for applying these guidelines is usually a total ship length ≥12 m or ≥24 m. However, a vast majority of registered fishing vessels are <12 m long, and the fishers of these vessels suffer substantially more industrial accidents. Thus, we conducted a quantitative analysis of 1093 industrial accidents affecting fishers on fishing vessels <12 m in length, analyzed risk using a Bayesian network analysis (a method proposed by the Formal Safety Assessment of the IMO), and administered a questionnaire survey to a panel of experts in order to ascertain the risk for different types of industrial accidents and propose specific measures to reduce this risk.

Suggested Citation

  • Seung-Hyun Lee & Su-Hyung Kim & Kyung-Jin Ryu & Yoo-Won Lee, 2024. "Bayesian Network Analysis of Industrial Accident Risk for Fishers on Fishing Vessels Less Than 12 m in Length," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:3977-:d:1391457
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/3977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/3977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Trucco, P. & Cagno, E. & Ruggeri, F. & Grande, O., 2008. "A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 845-856.
    3. Fang Wang & Weijie Du & Hongxiang Feng & Yun Ye & Manel Grifoll & Guiyun Liu & Pengjun Zheng, 2023. "Identification of Risk Influential Factors for Fishing Vessel Accidents Using Claims Data from Fishery Mutual Insurance Association," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    4. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2017. "Integration of interpretive structural modelling with Bayesian network for biodiesel performance analysis," Renewable Energy, Elsevier, vol. 107(C), pages 194-203.
    6. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    8. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    9. Martins, Marcelo Ramos & Maturana, Marcos Coelho, 2013. "Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 89-109.
    10. HÃ¥vold, Jon Ivar, 2010. "Safety culture and safety management aboard tankers," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 511-519.
    11. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Sui, Zhongyi & Wang, Shuaian, 2025. "Traffic advisory for ship encounter situation based on linear dynamic system," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    13. Bao, Minghan & Arzaghi, Ehsan & Abaei, Mohammad Mahdi & Abbassi, Rouzbeh & Garaniya, Vikram & Abdussamie, Nagi & Heasman, Kevin, 2024. "Site selection for offshore renewable energy platforms: A multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 229(C).
    14. Afshin Ghahramani & John McLean Bennett & Aram Ali & Kathryn Reardon-Smith & Glenn Dale & Stirling D. Roberton & Steven Raine, 2021. "A Risk-Based Approach to Mine-Site Rehabilitation: Use of Bayesian Belief Network Modelling to Manage Dispersive Soil and Spoil," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    15. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Qiao, Wanguan, 2021. "Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    17. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    18. Elon Manurung & Effrida Effrida & Andreas James Gondowonto, 2019. "Effect of Financial Performance, Good Corporate Governance and Corporate Size on Corporate Value in Food and Beverages," International Journal of Economics and Financial Issues, Econjournals, vol. 9(6), pages 100-105.
    19. She, Jianjun & Guo, Zihao & Li, Zhijian & Liang, Shuwei & Zhou, Yilun, 2024. "Research on scenario deduction and emergency decision-making evaluation for construction safety accidents," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    20. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:3977-:d:1391457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.