IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p350-d1310578.html
   My bibliography  Save this article

Changing Urban Temperature and Rainfall Patterns in Jakarta: A Comprehensive Historical Analysis

Author

Listed:
  • Dikman Maheng

    (Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands
    Department of Coastal and Urban Risk and Resilience, IHE Delft, Institute for Water Education, WestVest 7, 2611AX Delft, The Netherlands
    Department of Civil Engineering, Universitas Muhammadiyah Kendari, Jalan Ahmad Dahlan 10, Kendari 93117, Indonesia)

  • Biswa Bhattacharya

    (Department of Hydro Informatics and Socio-Technical Innovation, IHE Delft, Institute for Water Education, WestVest 7, 2611AX Delft, The Netherlands)

  • Chris Zevenbergen

    (Department of Coastal and Urban Risk and Resilience, IHE Delft, Institute for Water Education, WestVest 7, 2611AX Delft, The Netherlands
    Department of Urbanism, Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628BL Delft, The Netherlands)

  • Assela Pathirana

    (Department of Coastal and Urban Risk and Resilience, IHE Delft, Institute for Water Education, WestVest 7, 2611AX Delft, The Netherlands)

Abstract

The increasing global population and in-country migration have a significant impact on global land use land cover (LULC) change, which reduces green spaces and increases built-up areas altering the near-surface radiation and energy budgets, as well as the hydrological cycle over an urban area. The LULC change can lead to a combination of hazards such as increasing urban temperatures and intensified rainfall, ultimately resulting in increased flooding. This present study aims to discuss the changing pattern in urban temperature, daily rainfall, and flooding in Jakarta. The daily urban temperature and daily rainfall were based on a 30-year dataset from three meteorological stations of Jakarta in the period between 1987 and 2013. The changing trend was analyzed by using the Mann–Kendall and the Pettitt’s tests. The relation between daily rainfall and flooding was analyzed using a 30-year flooding dataset collected from several sources including the international disaster database, research, and newspaper. The results show that there was an increasing trend in the daily temperature and the daily rainfall in Jakarta. The annual maximum daily temperature showed that an increasing trend started in 2001 at the KMY station, and in 1996 at the SHIA station. In general, the highest annual maximum daily temperature was about 37 °C, while the lowest was about 33 °C. Moreover, the maximum daily rainfall started increasing from 2001. An increase in the maximum daily rainfall was observed mainly in January and February, which coincided with the flood events recorded in these months in Jakarta. This indicates that Jakarta is not only vulnerable to high urban temperature but also to flooding. While these two hazards occur in distinct timeframes, there is potential for their convergence in the same geographical area. This study provides new and essential insights to enhance urban resilience and climate adaptation, advocating a holistic approach required to tackle these combined hazards.

Suggested Citation

  • Dikman Maheng & Biswa Bhattacharya & Chris Zevenbergen & Assela Pathirana, 2023. "Changing Urban Temperature and Rainfall Patterns in Jakarta: A Comprehensive Historical Analysis," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:350-:d:1310578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    2. Wanderson Luiz-Silva & Antonio Carlos Oscar-Júnior, 2022. "Climate extremes related with rainfall in the State of Rio de Janeiro, Brazil: a review of climatological characteristics and recorded trends," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 713-732, October.
    3. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    4. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Author Correction: Global land change from 1982 to 2016," Nature, Nature, vol. 563(7732), pages 26-26, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    2. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    3. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    4. Min Wang & Kongtao Qin & Yanhong Jia & Xiaohan Yuan & Shuqi Yang, 2022. "Land Use Transition and Eco-Environmental Effects in Karst Mountain Area Based on Production-Living-Ecological Space: A Case Study of Longlin Multinational Autonomous County, Southwest China," IJERPH, MDPI, vol. 19(13), pages 1-23, June.
    5. Xiaotong Wang & Jiazheng Han & Jian Lin, 2022. "Response of Land Use and Net Primary Productivity to Coal Mining: A Case Study of Huainan City and Its Mining Areas," Land, MDPI, vol. 11(7), pages 1-16, June.
    6. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    7. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Yuji Hara & Chizuko Hirai & Yuki Sampei, 2022. "Mapping Uncounted Anthropogenic Fill Flows: Environmental Impact and Mitigation," Land, MDPI, vol. 11(11), pages 1-19, November.
    9. Liwei Xing & Liang Chi & Shuqing Han & Jianzhai Wu & Jing Zhang & Cuicui Jiao & Xiangyang Zhou, 2022. "Spatiotemporal Dynamics of Wetland in Dongting Lake Based on Multi-Source Satellite Observation Data during Last Two Decades," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    10. Qing Wang & Yuhang Xiao, 2022. "Has Urban Construction Land Achieved Low-Carbon Sustainable Development? A Case Study of North China Plain, China," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
    11. Berman, Nicolas & Couttenier, Mathieu & Leblois, Antoine & Soubeyran, Raphael, 2023. "Crop prices and deforestation in the tropics," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    12. Yiming Wang & Yunfeng Hu & Xiaoyu Niu & Huimin Yan & Lin Zhen, 2022. "Land Use/Cover Change and Its Driving Mechanism in Thailand from 2000 to 2020," Land, MDPI, vol. 11(12), pages 1-22, December.
    13. Kong, Xuesong & Fu, Mengxue & Zhao, Xiang & Wang, Jing & Jiang, Ping, 2022. "Ecological effects of land-use change on two sides of the Hu Huanyong Line in China," Land Use Policy, Elsevier, vol. 113(C).
    14. Yanyan Li & Jinbing Zhang & Hui Zhu & Zhimin Zhou & Shan Jiang & Shuangyan He & Ying Zhang & Yicheng Huang & Mengfan Li & Guangrui Xing & Guanghui Li, 2023. "Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    15. Wenfei Luan & Ge Li & Bo Zhong & Jianwei Geng & Xin Li & Hui Li & Shi He, 2023. "Improving Dryland Urban Land Cover Classification Accuracy Using a Classical Convolution Neural Network," Land, MDPI, vol. 12(8), pages 1-20, August.
    16. Tianyi Cai & Xueyuan Luo & Liyao Fan & Jing Han & Xinhuan Zhang, 2022. "The Impact of Cropland Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cropland Hotspots in China during 2000–2020," Land, MDPI, vol. 11(12), pages 1-21, December.
    17. Shilei Wang & Yanbo Qu & Weiying Zhao & Mei Guan & Zongli Ping, 2022. "Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation," Land, MDPI, vol. 11(4), pages 1-26, March.
    18. Haozhe Zhang & Qingyuan Yang & Huiming Zhang & Lulu Zhou & Hongji Chen, 2021. "Optimization of Land Use Based on the Source and Sink Landscape of Ecosystem Services: A Case Study of Fengdu County in the Three Gorges Reservoir Area, China," Land, MDPI, vol. 10(11), pages 1-24, November.
    19. Senkai Xie & Wenjia Zhang & Yi Zhao & De Tong, 2022. "Extracting Land Use Change Patterns of Rural Town Settlements with Sequence Alignment Method," Land, MDPI, vol. 11(2), pages 1-17, February.
    20. Urszula Somorowska, 2022. "Changes in Terrestrial Evaporation across Poland over the Past Four Decades Dominated by Increases in Summer Months," Resources, MDPI, vol. 11(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:350-:d:1310578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.