IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7308-d1134915.html
   My bibliography  Save this article

Sustainable Application of Automatically Generated Multi-Agent System Model in Urban Renewal

Author

Listed:
  • Zixin Liang

    (Faculty of Engineering and Information Technology, University of Pécs, 7624 Pécs, Hungary)

  • Géza Várady

    (Faculty of Engineering and Information Technology, University of Pécs, 7624 Pécs, Hungary)

  • Márk Balázs Zagorácz

    (Faculty of Engineering and Information Technology, University of Pécs, 7624 Pécs, Hungary)

Abstract

As cities expand, many old towns face the threat of being renovated or demolished. In recent years, the drawbacks of extensive urban renewal have become increasingly apparent, and the focus of urban development is gradually shifting from efficiency to quality. This study aims to combine urban renewal with emerging technologies to address the dilemma between efficiency and quality in urban renewal. The study found that algorithm models based on graph theory, topology, and shortest path principles neglect the influence of internal states and visual features on pedestrian activity, resulting in lower simulation accuracy. Although incorporating internal states and visual features into the core of the algorithm further improved the simulation accuracy, the model operates in a 3D environment with lower efficiency. To address the problems of insufficient simulation accuracy and low efficiency, this study proposes a dynamic pedestrian activity model based on a multi-agent system and incorporating visual features. The model simulates pedestrian daily activity paths using pheromones and virtual sensors as the core, and it was found that using Visibility Graph Analysis could accurately divide pheromones in the environment, thus obtaining more accurate simulation results. Subsequently, based on the optimized pedestrian model’s agent activity rules and dynamic pheromone theory, a model for automatically generating road paving in urban renewal projects was developed, and the generated results were verified for their rationality through design practice. This technology can effectively promote urban renewal and the preservation of historic neighborhoods, providing technical support for achieving sustainable urban development.

Suggested Citation

  • Zixin Liang & Géza Várady & Márk Balázs Zagorácz, 2023. "Sustainable Application of Automatically Generated Multi-Agent System Model in Urban Renewal," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7308-:d:1134915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoxiao Rao & Junda Zhou & Kangle Ding & Jifeng Wang & Jiaqi Fu & Qinghong Zhu, 2022. "Research on the Cultural Tracing of the Patriarchal Clan System of Traditional Buildings in the Eastern Zhejiang Province, China, Based on Space Syntax: The Case Study of Huzhai in Shaoxing," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
    2. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    3. Xianfeng Huang & Zhen Lu & Zhixiang Zhuang, 2019. "Analysis of the Wind Environment to Improve the Thermal Comfort in the Colonnade Space of a Qilou Street Based on the Relative Warmth Index," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    4. Nigel Gilbert & Pietro Terna, 2000. "How to build and use agent-based models in social science," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 1(1), pages 57-72, March.
    5. Claudia Yamu & Akkelies van Nes & Chiara Garau, 2021. "Bill Hillier’s Legacy: Space Syntax—A Synopsis of Basic Concepts, Measures, and Empirical Application," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    6. Djamel Boussaa, 2017. "Urban Regeneration and the Search for Identity in Historic Cities," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran Li & Liang Mao, 2022. "Spatial Characteristics of Suburban Villages Based on Spatial Syntax," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    2. Matteo Richiardi, 2003. "The Promises and Perils of Agent-Based Computational Economics," LABORatorio R. Revelli Working Papers Series 29, LABORatorio R. Revelli, Centre for Employment Studies.
    3. Johannes Dahlke & Kristina Bogner & Matthias Mueller & Thomas Berger & Andreas Pyka & Bernd Ebersberger, 2020. "Is the Juice Worth the Squeeze? Machine Learning (ML) In and For Agent-Based Modelling (ABM)," Papers 2003.11985, arXiv.org.
    4. Peng Dai & Song Han & Guannan Fu & Hui Fu & Yanjun Wang, 2023. "Optimization Path of Metro Commercial Passageway Based on Computational Analysis," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    5. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    6. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    7. Yue Peng & Hui Qiu & Xinlu Wang, 2023. "The Influence of Spatial Functions on the Public Space System of Traditional Settlements," Sustainability, MDPI, vol. 15(11), pages 1-26, May.
    8. Ugo Merlone & Daren Sandbank & Ferenc Szidarovszky, 2013. "Equilibria analysis in social dilemma games with Skinnerian agents," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 12(2), pages 219-233, November.
    9. Xiang Liu & Wanjiang Wang & Zixuan Wang & Junkang Song & Ke Li, 2023. "Simulation Study on Outdoor Wind Environment of Residential Complexes in Hot-Summer and Cold-Winter Climate Zones Based on Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    10. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    11. Zhai, Xueting & Zhong, Dixi & Luo, Qiuju, 2019. "Turn it around in crisis communication: An ABM approach," Annals of Tourism Research, Elsevier, vol. 79(C).
    12. Giovanni Dosi & Andrea Roventini, 2017. "Agent-Based Macroeconomics and Classical Political Economy: Some Italian Roots," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 3(3), pages 261-283, November.
    13. Lamieri, Marco & Bertacchini, Enrico, 2006. "What if Hayek goes shopping in the bazaar?," MPRA Paper 367, University Library of Munich, Germany, revised 21 Jun 2006.
    14. Matteo Richiardi & Ross E. Richardson, 2017. "JAS-mine: A new platform for microsimulation and agent-based modelling," International Journal of Microsimulation, International Microsimulation Association, vol. 10(1), pages 106-134.
    15. Tao Zhang & William J. Nuttall, 2007. "An Agent Based Simulation of Smart Metering Technology Adoption," Working Papers EPRG 0727, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    16. Nick Malleson & Andrew Evans & Tony Jenkins, 2009. "An Agent-Based Model of Burglary," Environment and Planning B, , vol. 36(6), pages 1103-1123, December.
    17. Aringhieri, Roberto & Duma, Davide & Fragnelli, Vito, 2018. "Modeling the rational behavior of individuals on an e-commerce system," Operations Research Perspectives, Elsevier, vol. 5(C), pages 22-31.
    18. Gomes, Sharlene L. & Hermans, Leon M. & Thissen, Wil A.H., 2018. "Extending community operational research to address institutional aspects of societal problems: Experiences from peri-urban Bangladesh," European Journal of Operational Research, Elsevier, vol. 268(3), pages 904-917.
    19. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    20. Pietro Terna, 2000. "Sum: A Surprising (Un)Realistic Market - Building A Simple Stock Market Structure With Swarm," Computing in Economics and Finance 2000 173, Society for Computational Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7308-:d:1134915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.