IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6819-d1126495.html
   My bibliography  Save this article

Associating Metrics of Hunting Effort with Hunting Rate: A Case Study with the Wild Boar Sus scrofa

Author

Listed:
  • Paolo Varuzza

    (Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Mezzocannone 8, 80134 Napoli, Italy)

  • Marco Lombardini

    (Geographica srl, Via Prato 41, 84039 Teggiano, Italy)

  • Valerio Toscano

    (Regional Reference Center of Urban Veterinary Hygiene (CRIUV), Via Marco Rocco di Torrepadula c/o Presidio Frullone, 80145 Napoli, Italy)

  • Felice Argenio

    (Geographica srl, Via Prato 41, 84039 Teggiano, Italy)

  • Nicola D’Alessio

    (Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy)

  • Vincenzo Caputo

    (Regional Reference Center of Urban Veterinary Hygiene (CRIUV), Via Marco Rocco di Torrepadula c/o Presidio Frullone, 80145 Napoli, Italy)

  • Vincenzo Veneziano

    (Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Mezzocannone 8, 80134 Napoli, Italy)

  • Alessandro Fioretti

    (Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Mezzocannone 8, 80134 Napoli, Italy)

Abstract

Wild boar Sus scrofa populations have increased dramatically in recent decades throughout Europe. While hunting is widely used in management activities; it rarely has an important role in regulating and reducing wild boar populations. Therefore, increasing the efficiency of hunting is a compelling issue. In this study, we used a three-year dataset (2016–2018) on a wild boar population living in Campania (southern Italy) as a case study to explore how the hunting effort made in collective drive hunts affected the hunting rate, estimated as the number of individuals culled per day. We fitted a Linear Mixed Model, in which we included the number of wild boars culled per drive hunt as the dependent variable, and the number of beaters, shooters and dogs and the month during which hunting occurred as the predictors. A mean of 1.81 wild boars were culled per drive hunt. The number of culled animals per hunt increased with the increasing number of hunting dogs and with the progression of the hunting season (i.e., from October to December), whereas the number of beaters and shooters had no effect. Overall, we observed a low hunting rate. We suggest that adjusting the hunting calendar and reorganising wild boar collective hunts, e.g., through an appropriate management of the number and training of hunting dogs, are essential to increase the hunting rate. Our results can be useful for wildlife managers to enhance hunting contribution in counteracting the negative impact of wild boar.

Suggested Citation

  • Paolo Varuzza & Marco Lombardini & Valerio Toscano & Felice Argenio & Nicola D’Alessio & Vincenzo Caputo & Vincenzo Veneziano & Alessandro Fioretti, 2023. "Associating Metrics of Hunting Effort with Hunting Rate: A Case Study with the Wild Boar Sus scrofa," Sustainability, MDPI, vol. 15(8), pages 1-9, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6819-:d:1126495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    2. Teruaki Kido & Yuko Yotsumoto & Masamichi J. Hayashi, 2025. "Hierarchical representations of relative numerical magnitudes in the human frontoparietal cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    4. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    5. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    7. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    10. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    13. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    14. Evans O. Mudibo & Jasper Bogaert & Caroline Tigoi & Moses M. Ngari & Benson O. Singa & Christina L. Lancioni & Abdoulaye Hama Diallo & Emmie Mbale & Ezekiel Mupere & John Mukisa & Johnstone Thitiri & , 2024. "Systemic biological mechanisms underpin poor post-discharge growth among severely wasted children with HIV," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Lin-Lin Wang & Zachary Y. Huang & Wen-Fei Dai & Yong-Ping Yang & Yuan-Wen Duan, 2024. "Mixed effects of honey bees on pollination function in the Tibetan alpine grasslands," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Szefer Elena & Lu Donghuan & Nathoo Farouk & Beg Mirza Faisal & Graham Jinko, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 367-386, December.
    17. Michele Ricci & Andrea Devecchi & Riccardo Migliavada & Maria Piochi & Luisa Torri, 2025. "Effect of Demographic Characteristics and Personality Traits on Eating Patterns in the Context of Dietary Intervention: The EATMED Case Study," IJERPH, MDPI, vol. 22(7), pages 1-16, July.
    18. Julien Collet & Samantha C Patrick & Henri Weimerskirch, 2017. "A comparative analysis of the behavioral response to fishing boats in two albatross species," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1337-1347.
    19. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    20. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    21. Katrijn Delaruelle, 2023. "Migration-related inequalities in loneliness across age groups: a cross-national comparative study in Europe," European Journal of Ageing, Springer, vol. 20(1), pages 1-17, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6819-:d:1126495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.