IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6067-d1112985.html
   My bibliography  Save this article

Machine Learning-Based Classification of Asbestos-Containing Roofs Using Airborne RGB and Thermal Imagery

Author

Listed:
  • Gordana Kaplan

    (Institute of Earth and Space Sciences, Eskisehir Technical University, Eskisehir 26555, Turkey)

  • Mateo Gašparović

    (Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, 10000 Zagreb, Croatia)

  • Onur Kaplan

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

  • Vancho Adjiski

    (Faculty of Natural and Technical Sciences, Goce Delchev University, 2000 Stip, North Macedonia)

  • Resul Comert

    (Institute of Earth and Space Sciences, Eskisehir Technical University, Eskisehir 26555, Turkey
    Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514 Enschede, The Netherlands)

  • Mohammad Asef Mobariz

    (Institute of Graduate School, Eskisehir Technical University, Eskisehir 26555, Turkey)

Abstract

Detecting asbestos-containing roofs has been of great interest in the past few years as the substance negatively affects human health and the environment. Different remote sensing data have been successfully used for this purpose. However, RGB and thermal data have yet to be investigated. This study aims to investigate the classification of asbestos-containing roofs using RGB and airborne thermal data and state-of-the-art machine learning (ML) classification techniques. With the rapid development of ML reflected in this study, we evaluate three classifiers: Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost). We have used several image enhancement techniques to produce additional bands to improve the classification results. For feature selection, we used the Boruta technique; based on the results, we have constructed four different variations of the dataset. The results showed that the most important features for asbestos-containing roof detection were the investigated spectral indices in this study. From a ML point of view, SVM outperformed RF and XGBoost in the dataset using only the spectral indices, with a balanced accuracy of 0.93. Our results showed that RGB bands could produce as accurate results as the multispectral and hyperspectral data with the addition of spectral indices.

Suggested Citation

  • Gordana Kaplan & Mateo Gašparović & Onur Kaplan & Vancho Adjiski & Resul Comert & Mohammad Asef Mobariz, 2023. "Machine Learning-Based Classification of Asbestos-Containing Roofs Using Airborne RGB and Thermal Imagery," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6067-:d:1112985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gyung Doeok Han & GyuJin Jang & Jaeyoung Kim & Dong-Wook Kim & Renato Rodrogues & Seong-Hoon Kim & Hak-Jin Kim & Yong Suk Chung, 2021. "RGB images-based vegetative index for phenotyping kenaf (Hibiscus cannabinus L.)," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-15, September.
    2. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    3. Belinda Brown & Ian Hollins & Joe Pickin & Sally Donovan, 2023. "Asbestos Stocks and Flows Legacy in Australia," Sustainability, MDPI, vol. 15(3), pages 1-9, January.
    4. Mohammad Abbasi & Sherif Mostafa & Abel Silva Vieira & Nicholas Patorniti & Rodney A. Stewart, 2022. "Mapping Roofing with Asbestos-Containing Material by Using Remote Sensing Imagery and Machine Learning-Based Image Classification: A State-of-the-Art Review," Sustainability, MDPI, vol. 14(13), pages 1-29, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia V. Hikuwai & Nicholas Patorniti & Abel S. Vieira & Georgia Frangioudakis Khatib & Rodney A. Stewart, 2023. "Artificial Intelligence for the Detection of Asbestos Cement Roofing: An Investigation of Multi-Spectral Satellite Imagery and High-Resolution Aerial Imagery," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    2. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    3. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    4. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    5. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    6. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    7. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    9. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    10. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    11. Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
    12. Georgia Frangioudakis Khatib & Julia Collins & Pierina Otness & James Goode & Stacey Tomley & Peter Franklin & Justine Ross, 2023. "Australia’s Ongoing Challenge of Legacy Asbestos in the Built Environment: A Review of Contemporary Asbestos Exposure Risks," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    13. Faisal Alsayegh & Moh A Alkhamis & Fatima Ali & Sreeja Attur & Nicholas M Fountain-Jones & Mohammad Zubaid, 2022. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
    14. Kathleen Mahoney & Tim Driscoll & Julia Collins & Justine Ross, 2023. "The Past, Present and Future of Asbestos-Related Diseases in Australia: What Are the Data Telling Us?," Sustainability, MDPI, vol. 15(11), pages 1-12, May.
    15. Andrea Albergoni & Florentina J. Hettinga & Wim Stut & Francesco Sartor, 2020. "Factors Influencing Walking and Exercise Adherence in Healthy Older Adults Using Monitoring and Interfacing Technology: Preliminary Evidence," IJERPH, MDPI, vol. 17(17), pages 1-18, August.
    16. Franck M. Ramaharo & Michael Fitiavana Randriamifidy, 2023. "Determinants of renewable energy consumption in Madagascar: Evidence from feature selection algorithms," Working Papers hal-04262240, HAL.
    17. Jamei, Mehdi & Ali, Mumtaz & Karbasi, Masoud & Xiang, Yong & Ahmadianfar, Iman & Yaseen, Zaher Mundher, 2022. "Designing a Multi-Stage Expert System for daily ocean wave energy forecasting: A multivariate data decomposition-based approach," Applied Energy, Elsevier, vol. 326(C).
    18. Gang Chen & Xianju Li & Weitao Chen & Xinwen Cheng & Yujin Zhang & Shengwei Liu, 2014. "Extraction and application analysis of landslide influential factors based on LiDAR DEM: a case study in the Three Gorges area, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 509-526, November.
    19. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    20. Hamed Ahmadpour & Ommolbanin Bazrafshan & Elham Rafiei-Sardooi & Hossein Zamani & Thomas Panagopoulos, 2021. "Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection," Sustainability, MDPI, vol. 13(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6067-:d:1112985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.