IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4711-d1089814.html
   My bibliography  Save this article

Using the GeoWEPP Model to Predict Water Erosion in Micro-Watersheds in the Brazilian Cerrado

Author

Listed:
  • Wellington de Azambuja Magalhães

    (Curso de Doutorado Programa de Pós-Graduação em Agricultura Tropical, Universidade Federal de Mato Grosso, UFMT, Cuiabá 78060-900, MT, Brazil)

  • Ricardo Santos Silva Amorim

    (Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, DEA/CCA/UFV, Viçosa 36570-000, MG, Brazil)

  • Maria O’Healy Hunter

    (Curso de Doutorado Programa de Pós-Graduação em Agricultura Tropical, Universidade Federal de Mato Grosso, UFMT, Cuiabá 78060-900, MT, Brazil)

  • Edwaldo Dias Bocuti

    (Curso de Doutorado Programa de Pós-Graduação em Agricultura Tropical, Universidade Federal de Mato Grosso, UFMT, Cuiabá 78060-900, MT, Brazil)

  • Luis Augusto Di Loreto Di Raimo

    (Curso de Doutorado Programa de Pós-Graduação em Agricultura Tropical, Universidade Federal de Mato Grosso, UFMT, Cuiabá 78060-900, MT, Brazil)

  • Wininton Mendes da Silva

    (Empresa Mato-Grossense de Pesquisa, Assistência e Extensão Rural (EMPAER-MT), Centro Político Administrativo, Cuiabá 78049-903, MT, Brazil)

  • Aaron Kinyu Hoshide

    (College of Natural Sciences, Forestry and Agriculture, The University of Maine, Orono, ME 04469, USA
    AgriSciences, Universidade Federal de Mato Grosso, Caixa Postal 729, Sinop 78550-970, MT, Brazil)

  • Daniel Carneiro de Abreu

    (AgriSciences, Universidade Federal de Mato Grosso, Caixa Postal 729, Sinop 78550-970, MT, Brazil
    Instituto de Ciências Agrárias e Ambientais (ICAA), Universidade Federal do Mato Grosso, Campus Universitário de Sinop, Avenida Alexandre Ferronato, 1200, Sinop 78550-728, MT, Brazil)

Abstract

The GeoWEPP model has estimated water and soil losses caused by erosion at the watershed level in different parts of the world. However, this model was developed and its parameters have been adjusted for temperate climates, which are different from tropical climates such as those found in Brazil. Our study evaluated the performance of the GeoWEPP model in estimating soil erosion in three micro-watersheds in the Cerrado (i.e., savannah) of southeastern Mato Grosso state, Brazil. Major land uses modeled were soybean and corn cultivation, traditional pasture, and native vegetation. Input parameters for the GeoWEPP model involved climate, soil, land use and management, and topography. GeoWEPP was calibrated with input parameters for soil erodibility specified as interrill and rill soil erosion, soil critical shear stress, and saturated hydraulic conductivity obtained experimentally and estimated by internal routine equations of the GeoWEPP model. Soil losses observed in micro-watersheds with agriculture, pasture, and native vegetation were 0.11, 0.06, and 0.10 metric tons per hectare per year, respectively. GeoWEPP best modeled soil erosion for native vegetation and pasture, while over-estimating that for crops. Surface runoff was best modeled for crops versus native vegetation and pasture. The GeoWEPP model performed better when using soil erodibility input parameters.

Suggested Citation

  • Wellington de Azambuja Magalhães & Ricardo Santos Silva Amorim & Maria O’Healy Hunter & Edwaldo Dias Bocuti & Luis Augusto Di Loreto Di Raimo & Wininton Mendes da Silva & Aaron Kinyu Hoshide & Daniel , 2023. "Using the GeoWEPP Model to Predict Water Erosion in Micro-Watersheds in the Brazilian Cerrado," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4711-:d:1089814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rabin Bhattarai & Dushmata Dutta, 2007. "Estimation of Soil Erosion and Sediment Yield Using GIS at Catchment Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1635-1647, October.
    2. Daniela Roberta Borella & Adilson Pacheco de Souza & Frederico Terra de Almeida & Daniel Carneiro de Abreu & Aaron Kinyu Hoshide & Glauber Altrão Carvalho & Rafaela Rocha Pereira & Apoliano Francisco , 2022. "Dynamics of Sediment Transport in the Teles Pires River Basin in the Cerrado-Amazon, Brazil," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rhavel Salviano Dias Paulista & Frederico Terra de Almeida & Adilson Pacheco de Souza & Aaron Kinyu Hoshide & Daniel Carneiro de Abreu & Jaime Wendeley da Silva Araujo & Charles Campoe Martim, 2023. "Estimating Suspended Sediment Concentration Using Remote Sensing for the Teles Pires River, Brazil," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    2. V. Prasannakumar & H. Vijith & N. Geetha & R. Shiny, 2011. "Regional Scale Erosion Assessment of a Sub-tropical Highland Segment in the Western Ghats of Kerala, South India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3715-3727, November.
    3. Guoqiang Wang & Prasantha Hapuarachchi & Hiroshi Ishidaira & Anthony Kiem & Kuniyoshi Takeuchi, 2009. "Estimation of Soil Erosion and Sediment Yield During Individual Rainstorms at Catchment Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1447-1465, June.
    4. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    5. Wen-Chieh Chou, 2010. "Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2075-2090, August.
    6. Vesna Đukić & Zoran Radić, 2014. "GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4567-4581, October.
    7. A. Jasrotia & Abinash Majhi & Sunil Singh, 2009. "Water Balance Approach for Rainwater Harvesting using Remote Sensing and GIS Techniques, Jammu Himalaya, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3035-3055, November.
    8. Md Jahangir Alam & Dushmanta Dutta, 2016. "A Sub-Catchment Based Approach for Modelling Nutrient Dynamics and Transport at a River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5455-5478, November.
    9. Ching-Nuo Chen & Chih-Heng Tsai & Chang-Tai Tsai, 2011. "Simulation of Runoff and Suspended Sediment Transport Rate in a Basin with Multiple Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 793-816, February.
    10. Vaibhav Garg & V. Jothiprakash, 2012. "Sediment Yield Assessment of a Large Basin using PSIAC Approach in GIS Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 799-840, February.
    11. M. Naik & E. Rao & T. Eldho, 2009. "Finite Element Method and GIS Based Distributed Model for Soil Erosion and Sediment Yield in a Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 553-579, February.
    12. Sagarika Patowary & Arup Kumar Sarma, 2018. "GIS-Based Estimation of Soil Loss from Hilly Urban Area Incorporating Hill Cut Factor into RUSLE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3535-3547, August.
    13. Amit Kumar & Mamta Devi & Benidhar Deshmukh, 2014. "Integrated Remote Sensing and Geographic Information System Based RUSLE Modelling for Estimation of Soil Loss in Western Himalaya, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3307-3317, August.
    14. Aline Kraeski & Frederico Terra de Almeida & Adilson Pacheco de Souza & Tania Maria de Carvalho & Daniel Carneiro de Abreu & Aaron Kinyu Hoshide & Cornélio Alberto Zolin, 2023. "Land Use Changes in the Teles Pires River Basin’s Amazon and Cerrado Biomes, Brazil, 1986–2020," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    15. Yi Xiao & Jinqi Zhao & Siqi Sun & Luo Guo & Jan Axmacher & Weiguo Sang, 2019. "Sustainability Dynamics of Traditional Villages: A Case Study in Qiannan Prefecture, Guizhou, China," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    16. Walter Chen & Kent Thomas, 2020. "Revised SEDD (RSEDD) Model for Sediment Delivery Processes at the Basin Scale," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    17. Md Kabir & Dushmanta Dutta & Sadayuki Hironaka, 2014. "Estimating Sediment Budget at a River Basin Scale Using a Process-Based Distributed Modelling Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4143-4160, September.
    18. L. Zhang & Ke Z. Bai & Man J. Wang & R. Karthikeyan, 2016. "Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1213-1230, January.
    19. L. Zhang & Ke Bai & Man Wang & R. Karthikeyan, 2016. "Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1213-1230, January.
    20. Sumedh R. Kashiwar & Manik Chandra Kundu & Usha R. Dongarwar, 2022. "Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 937-959, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4711-:d:1089814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.