IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p3958-d1076348.html
   My bibliography  Save this article

Hydraulic Characteristics Analysis of Double-Bend Roadway of Abandoned Mine Pumped Storage

Author

Listed:
  • Xin Zhou

    (School of Mechanics and Civil Engineering, China University of Mining & Technology, Xuzhou 221116, China)

  • Yuejin Zhou

    (School of Mechanics and Civil Engineering, China University of Mining & Technology, Xuzhou 221116, China
    State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221116, China)

  • Xiaoding Xu

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221116, China)

  • Chunlin Zeng

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221116, China)

  • Chaobin Zhu

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221116, China)

Abstract

The roadway of an abandoned mine is an ideal site for the construction of underground pumped storage hydropower, but the operation of the power station is deeply restricted by the structural characteristics of the roadway. With the common double-bend roadway of an abandoned mine as the research object, this study conducted numerical simulations based on the theory of mass conservation and momentum conservation and explored the law of the flow field characteristics and energy loss of a double-bend roadway with the roadway structure and angle. The results showed that a velocity gradient and a pressure gradient form from the outer wall to the inner wall when the fluid flows through the two bends of the roadway. The low-speed zone and maximum positive pressure appeared at the outside of the bend, while the high-speed zone and maximum negative pressure appeared at the inside of the bend. As the angle rose, the peak value of positive pressure increased correspondingly when the fluid flowed through Model A, whereas the negative pressure displayed a fluctuating trend of increasing first and then decreasing and reached its peak when β = 45°. By contrast, when the fluid flowed through Model B, the velocity gradient was symmetrically distributed at the two bends. The peak value of the positive pressure of the first bend increased, and the other positive and negative pressures displayed a trend of “first increasing and then decreasing” when the angle increased, and they reached their peak when β = 45°. When β ≥ 60°, the fluid formed a backflow zone when it flowed through each bend. With an increase in the angle, the area of the backflow zone increased correspondingly. The head loss of the two models increased with the angle. At the same angle, the head loss of Model B was greater than that of Model A. According to the requirement of abandoned mine pumped storage, the roadways with a bend angle of 15° or 30° in Model A and 15° in Model B can be used. The research results can provide some reference for the underground space exploitation and utilization of abandoned mine pumped storage.

Suggested Citation

  • Xin Zhou & Yuejin Zhou & Xiaoding Xu & Chunlin Zeng & Chaobin Zhu, 2023. "Hydraulic Characteristics Analysis of Double-Bend Roadway of Abandoned Mine Pumped Storage," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:3958-:d:1076348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/3958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/3958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nzotcha, Urbain & Kenfack, Joseph & Blanche Manjia, Marceline, 2019. "Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 930-947.
    2. Menéndez, Javier & Loredo, Jorge & Galdo, Mónica & Fernández-Oro, Jesús M., 2019. "Energy storage in underground coal mines in NW Spain: Assessment of an underground lower water reservoir and preliminary energy balance," Renewable Energy, Elsevier, vol. 134(C), pages 1381-1391.
    3. Estanislao Pujades & Philippe Orban & Pierre Archambeau & Vasileios Kitsikoudis & Sebastien Erpicum & Alain Dassargues, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Interactions with Groundwater Flow," Energies, MDPI, vol. 13(9), pages 1-21, May.
    4. Javier Menéndez & Jesús M. Fernández-Oro & Mónica Galdo & Jorge Loredo, 2020. "Transient Simulation of Underground Pumped Storage Hydropower Plants Operating in Pumping Mode," Energies, MDPI, vol. 13(7), pages 1-17, April.
    5. Vasileios Kitsikoudis & Pierre Archambeau & Benjamin Dewals & Estanislao Pujades & Philippe Orban & Alain Dassargues & Michel Pirotton & Sebastien Erpicum, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics," Energies, MDPI, vol. 13(14), pages 1-16, July.
    6. Menéndez, Javier & Fernández-Oro, Jesús M. & Galdo, Mónica & Loredo, Jorge, 2019. "Pumped-storage hydropower plants with underground reservoir: Influence of air pressure on the efficiency of the Francis turbine and energy production," Renewable Energy, Elsevier, vol. 143(C), pages 1427-1438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasileios Kitsikoudis & Pierre Archambeau & Benjamin Dewals & Estanislao Pujades & Philippe Orban & Alain Dassargues & Michel Pirotton & Sebastien Erpicum, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics," Energies, MDPI, vol. 13(14), pages 1-16, July.
    2. Estanislao Pujades & Philippe Orban & Pierre Archambeau & Vasileios Kitsikoudis & Sebastien Erpicum & Alain Dassargues, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Interactions with Groundwater Flow," Energies, MDPI, vol. 13(9), pages 1-21, May.
    3. Zhixin Zhang & Qiang Guo & Wei Liu, 2022. "Evaluation of Long-Term Tightness of the Coal Pillar Dam of Underground Reservoir and Protection Countermeasures," Energies, MDPI, vol. 15(19), pages 1-20, October.
    4. Qianjun Chen & Zhengmeng Hou & Xuning Wu & Shengyou Zhang & Wei Sun & Yanli Fang & Lin Wu & Liangchao Huang & Tian Zhang, 2023. "A Two-Step Site Selection Concept for Underground Pumped Hydroelectric Energy Storage and Potential Estimation of Coal Mines in Henan Province," Energies, MDPI, vol. 16(12), pages 1-21, June.
    5. Reinhard Madlener & Jan Martin Specht, 2020. "An Exploratory Economic Analysis of Underground Pumped-Storage Hydro Power Plants in Abandoned Deep Coal Mines," Energies, MDPI, vol. 13(21), pages 1-22, October.
    6. Javier Menéndez & Jesús M. Fernández-Oro & Mónica Galdo & Jorge Loredo, 2020. "Transient Simulation of Underground Pumped Storage Hydropower Plants Operating in Pumping Mode," Energies, MDPI, vol. 13(7), pages 1-17, April.
    7. Gao, Renbo & Wu, Fei & Zou, Quanle & Chen, Jie, 2022. "Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China," Energy, Elsevier, vol. 243(C).
    8. Xin Lyu & Tong Zhang & Liang Yuan & Ke Yang & Juejing Fang & Shanshan Li & Shuai Liu, 2022. "Pumped Storage Hydropower in Abandoned Mine Shafts: Key Concerns and Research Directions," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    9. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.
    10. Jarosław Kulpa & Paweł Kamiński & Kinga Stecuła & Dariusz Prostański & Piotr Matusiak & Daniel Kowol & Michał Kopacz & Piotr Olczak, 2021. "Technical and Economic Aspects of Electric Energy Storage in a Mine Shaft—Budryk Case Study," Energies, MDPI, vol. 14(21), pages 1-14, November.
    11. Menéndez, Javier & Ordónez, Almudena & Fernández-Oro, Jesús M. & Loredo, Jorge & Díaz-Aguado, María B., 2020. "Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings," Renewable Energy, Elsevier, vol. 146(C), pages 1166-1176.
    12. Kenfack, Joseph & Nzotcha, Urbain & Voufo, Joseph & Ngohe-Ekam, Paul Salomon & Nsangou, Jean Calvin & Bignom, Blaise, 2021. "Cameroon's hydropower potential and development under the vision of Central Africa power pool (CAPP): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    14. Candra Saigustia & Sylwester Robak, 2021. "Review of Potential Energy Storage in Abandoned Mines in Poland," Energies, MDPI, vol. 14(19), pages 1-16, October.
    15. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    16. Jane Rose Atwongyeire & Arkom Palamanit & Adul Bennui & Mohammad Shakeri & Kuaanan Techato & Shahid Ali, 2022. "Assessment of Suitable Areas for Smart Grid of Power Generated from Renewable Energy Resources in Western Uganda," Energies, MDPI, vol. 15(4), pages 1-31, February.
    17. Yang Wu & Qiangling Yao & Baoyang Wu & Hongxin Xie & Liqiang Yu & Yinghu Li & Lujun Wang, 2023. "Strength Damage and Acoustic Emission Characteristics of Water-Bearing Coal Pillar Dam Samples from Shangwan Mine, China," Energies, MDPI, vol. 16(4), pages 1-20, February.
    18. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    19. Jurasz, Jakub & Piasecki, Adam & Hunt, Julian & Zheng, Wandong & Ma, Tao & Kies, Alexander, 2022. "Building integrated pumped-storage potential on a city scale: An analysis based on geographic information systems," Energy, Elsevier, vol. 242(C).
    20. Moghaddam, Hossein Azizi & Shorabeh, Saman Nadizadeh, 2022. "Designing and implementing a location-based model to identify areas suitable for multi-renewable energy development for supplying electricity to agricultural wells," Renewable Energy, Elsevier, vol. 200(C), pages 1251-1264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:3958-:d:1076348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.