IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1376-d1032120.html
   My bibliography  Save this article

A Simulation Analysis of Land Use Changes in the Yarlung Zangbo River and Its Two Tributaries of Tibet Using the Markov–PLUS Model

Author

Listed:
  • Wenyuan Hao

    (Resources and Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China)

  • Zhenzhu Cao

    (School of Management, Hubei Business College, Wuhan 430069, China
    School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Shengya Ou

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
    Center for Turkmenistan Studies, China University of Geosciences, Wuhan 430074, China)

  • Yi Qin

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China
    Center for Turkmenistan Studies, China University of Geosciences, Wuhan 430074, China
    School of Foreign Languages, China University of Geosciences, Wuhan 430074, China)

  • Zhongbin Wang

    (Resources and Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China)

  • Shuang Yang

    (Resources and Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China)

  • Damien Sinonmatohou Tiando

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China
    China-Africa Institute (Wuhan), China University of Geosciences, Wuhan 430074, China)

  • Xin Fan

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China
    Center for Turkmenistan Studies, China University of Geosciences, Wuhan 430074, China)

Abstract

Since the beginning of the 21st century, the economic development of Tibet has been accelerating. The Yarlung Zangbo River and its two tributaries, as the region with the largest population concentration and the fastest economic development in Tibet, has been under the dual influence of global climate warming and the intensification of human social and economic activities, where a high number of land types, such as woodland, grassland, and water areas, have been transformed into other land types, and the residential area has expanded in a disorderly manner. The ability to maintain sustainable regional development has been severely damaged. To meet the requirements of different stages of social and economic development and regional social development goals, in this study, we use the Yarlung Zangbo River and its two tributaries of Tibet as an example. Based on the Markov–PLUS model and considering the natural, social, and cultural conditions of the basin, combined with the multi-landscape simulation of land use, we predict the land use situation of the Yarlung Zangbo River and its two tributaries of Tibet in 2038. We observed the following: (i) the Markov–PLUS model has a high simulation accuracy for different land types in the study area, and can sufficiently simulate the changes in different land types in the Yarlung Zangbo River and its two tributaries of Tibet; and (ii) the simulation settings of the three landscapes basically meet the different development modes and paths of the basin in the future. There were obvious differences in the structure of land use in the basin, among which there were obvious differences, especially agricultural land and water areas. Use of the Markov–PLUS model can provide data support and references for the implementation in terms of ecological scrutiny, landscape planning, and early warnings for food production consumption security and unreasonable land use, in order to achieve the sustainable development of the basin.

Suggested Citation

  • Wenyuan Hao & Zhenzhu Cao & Shengya Ou & Yi Qin & Zhongbin Wang & Shuang Yang & Damien Sinonmatohou Tiando & Xin Fan, 2023. "A Simulation Analysis of Land Use Changes in the Yarlung Zangbo River and Its Two Tributaries of Tibet Using the Markov–PLUS Model," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1376-:d:1032120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).
    2. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    3. Yousef Sakieh & Bahman Amiri & Afshin Danekar & Jahangir Feghhi & Sadeq Dezhkam, 2015. "Scenario-based evaluation of urban development sustainability: an integrative modeling approach to compromise between urbanization suitability index and landscape pattern," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1343-1365, December.
    4. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    5. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    6. Lu, Xiao & Shi, Yangyang & Chen, Changling & Yu, Miao, 2017. "Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province," Land Use Policy, Elsevier, vol. 69(C), pages 25-40.
    7. Shannon M. Sterling & Agnès Ducharne & Jan Polcher, 2013. "The impact of global land-cover change on the terrestrial water cycle," Nature Climate Change, Nature, vol. 3(4), pages 385-390, April.
    8. Daowei Zhang & Anne Stenger, 2015. "Value and valuation of forest ecosystem services," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(2), pages 129-140, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajida Perveen & Md. Kamruzzaman & Tan Yigitcanlar, 2017. "Developing Policy Scenarios for Sustainable Urban Growth Management: A Delphi Approach," Sustainability, MDPI, vol. 9(10), pages 1-27, October.
    2. Opschoor, J. (Hans) B., 1995. "Ecospace and the fall and rise of throughput intensity," Ecological Economics, Elsevier, vol. 15(2), pages 137-140, November.
    3. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    4. Bradford David F. & Fender Rebecca A & Shore Stephen H. & Wagner Martin, 2005. "The Environmental Kuznets Curve: Exploring a Fresh Specification," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-30, June.
    5. Ghimire, Narishwar & Woodward, Richard T., 2013. "Under- and over-use of pesticides: An international analysis," Ecological Economics, Elsevier, vol. 89(C), pages 73-81.
    6. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    7. Shuaibing Zhang & Kaixu Zhao & Shuoyang Ji & Yafang Guo & Fengqi Wu & Jingxian Liu & Fei Xie, 2022. "Evolution Characteristics, Eco-Environmental Response and Influencing Factors of Production-Living-Ecological Space in the Qinghai–Tibet Plateau," Land, MDPI, vol. 11(7), pages 1-26, July.
    8. G. Mythili & Shibashis Mukherjee, 2011. "Examining Environmental Kuznets Curve for river effluents in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 627-640, June.
    9. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    10. Fabian Knorre & Martin Wagner & Maximilian Grupe, 2021. "Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions," Econometrics, MDPI, vol. 9(1), pages 1-35, March.
    11. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    12. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    13. Nunes, P.A.L.D. & Nijkamp, P., 2011. "Biodiversity: Economic perspectives," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    14. Thomas Bolognesi, 2015. "The water vulnerability of metro and megacities: An investigation of structural determinants," Natural Resources Forum, Blackwell Publishing, vol. 39(2), pages 123-133, May.
    15. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    16. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    17. B. Venkatraja, 2021. "Does China exhibit any evidence of an Environmental Kuznets Curve? An ARDL bounds testing approach," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 88-110,111-.
    18. Andreoni, James & Levinson, Arik, 2001. "The simple analytics of the environmental Kuznets curve," Journal of Public Economics, Elsevier, vol. 80(2), pages 269-286, May.
    19. Ranjan, Ram & Shortle, James, 2007. "The environmental Kuznets curve when the environment exhibits hysteresis," Ecological Economics, Elsevier, vol. 64(1), pages 204-215, October.
    20. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1376-:d:1032120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.