IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15932-d1279953.html
   My bibliography  Save this article

Integrated Assessment and Restoration Pathways for Holistic Ecosystem Health in Anxi County, China

Author

Listed:
  • Tianyuan Zhu

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Shuming Zhang

    (Anxi Natural Resources Administration, Quanzhou 362400, China)

  • Yubo Wang

    (School of Big Data and Software Engineering, Chongqing University, Chongqing 400044, China)

  • Cuiping Wang

    (College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China)

  • Haowei Wang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    Xiamen Key Laboratory of Smart Management on the Urban Environment, Xiamen 361021, China)

Abstract

Different types of ecosystems form a complex community of life. Hence, ecosystem protection and restoration should not focus solely on a single ecosystem. Ecosystem health assessments should consider the integrity and systematicity of interrelated ecosystems to inform rational environmental planning and management. In this study, the key characteristic indicators of major ecosystems (mountain, water, forest, and cropland) and ecosystem service capacity indicators in Anxi County, China, were selected to construct an integrated assessment system of ecosystem health that led to integrated ecosystem restoration pathways that addressed the county’s ecological problems. The results revealed that ecosystem health was higher in the western and lower in the eastern parts of the county. Throughout the county, “medium” and “poor” ecosystem health levels predominated, revealing that overall ecosystem sustainability was weak. Ecosystem restoration programmes should be tailored to each health level. Where there was “excellent” and “good” ecosystem health ratings, those healthy ecosystem functions should be strengthened and maintained. In the “medium” health areas, the control and prevention of ecological problems should be strengthened. “Poor” health areas require immediate integrated ecological restoration projects that ensure the connectivity and coordination of restoration tasks in fragile ecosystems. This then will enhance holistic ecosystem stability and sustainability.

Suggested Citation

  • Tianyuan Zhu & Shuming Zhang & Yubo Wang & Cuiping Wang & Haowei Wang, 2023. "Integrated Assessment and Restoration Pathways for Holistic Ecosystem Health in Anxi County, China," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15932-:d:1279953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guan, Yanjun & Wang, Juan & Zhou, Wei & Bai, Zhongke & Cao, Yingui, 2023. "Delimiting supervision zones to inform the revision of land reclamation management modes in coal mining areas: A perspective from the succession characteristics of rehabilitated vegetation," Land Use Policy, Elsevier, vol. 131(C).
    2. Gashaw, Temesgen & Tulu, Taffa & Argaw, Mekuria & Worqlul, Abeyou W. & Tolessa, Terefe & Kindu, Mengistie, 2018. "Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia," Ecosystem Services, Elsevier, vol. 31(PA), pages 219-228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morgan, Edward A. & Buckwell, Andrew & Guidi, Caterina & Garcia, Beatriz & Rimmer, Lawrence & Cadman, Tim & Mackey, Brendan, 2022. "Capturing multiple forest ecosystem services for just benefit sharing: The Basket of Benefits Approach," Ecosystem Services, Elsevier, vol. 55(C).
    2. Yizhu Chen & Nuanyin Xu & Qianru Yu & Luo Guo, 2020. "Ecosystem Service Response to Human Disturbance in the Yangtze River Economic Belt: A Case of Western Hunan, China," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    3. Muluberhan Biedemariam & Emiru Birhane & Biadgilgn Demissie & Tewodros Tadesse & Girmay Gebresamuel & Solomon Habtu, 2022. "Ecosystem Service Values as Related to Land Use and Land Cover Changes in Ethiopia: A Review," Land, MDPI, vol. 11(12), pages 1-21, December.
    4. Md. Mostafizur Rahman & György Szabó, 2021. "Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh," Land, MDPI, vol. 10(8), pages 1-27, July.
    5. Henghui Xi & Wanglai Cui & Li Cai & Mengyuan Chen & Chenglei Xu, 2021. "Evaluation and Prediction of Ecosystem Service Value in the Zhoushan Islands Based on LUCC," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    6. Bo Wang & Taibao Yang, 2021. "Assessing Impact of Land Use Change on the Ecosystem Service Value in Yinchuan City from 1980 to 2018," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    7. Yujing Zhao & Hong Leng & Pingjun Sun & Qing Yuan, 2019. "Application and Validation of a Municipal Administrative Area Spatial Zoning Model in Village-Town System Planning," Sustainability, MDPI, vol. 11(7), pages 1-25, March.
    8. Abebaw Andarge Gedefaw & Clement Atzberger & Thomas Bauer & Sayeh Kassaw Agegnehu & Reinfried Mansberger, 2020. "Analysis of Land Cover Change Detection in Gozamin District, Ethiopia: From Remote Sensing and DPSIR Perspectives," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    9. Yang Wang & Remina Shataer & Tingting Xia & Xueer Chang & Hui Zhen & Zhi Li, 2021. "Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    10. Yu Shi & Xiaoxiao Fan & Xiaoying Ding & Meiqi Sun, 2024. "An Assessment of Ecological Sensitivity and Landscape Pattern in Abandoned Mining Land," Sustainability, MDPI, vol. 16(3), pages 1-27, January.
    11. Yong Cui & Haifeng Lan & Xinshuo Zhang & Ying He, 2022. "Confirmatory Analysis of the Effect of Socioeconomic Factors on Ecosystem Service Value Variation Based on the Structural Equation Model—A Case Study in Sichuan Province," Land, MDPI, vol. 11(4), pages 1-22, March.
    12. Fengran Wei & Mingshun Xiang & Lanlan Deng & Yao Wang & Wenheng Li & Suhua Yang & Zhenni Wu, 2023. "Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China," Sustainability, MDPI, vol. 15(19), pages 1-18, October.
    13. Haozhe Zhang & Qingyuan Yang & Zhongxun Zhang & Dan Lu & Huiming Zhang, 2021. "Spatiotemporal Changes of Ecosystem Service Value Determined by National Land Space Pattern Change: A Case Study of Fengdu County in The Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 18(9), pages 1-24, May.
    14. Suresh Chaudhary & Yukuan Wang & Amod Mani Dixit & Narendra Raj Khanal & Pei Xu & Bin Fu & Kun Yan & Qin Liu & Yafeng Lu & Ming Li, 2020. "A Synopsis of Farmland Abandonment and Its Driving Factors in Nepal," Land, MDPI, vol. 9(3), pages 1-22, March.
    15. Jiang, Wei & Wu, Tong & Fu, Bojie, 2021. "The value of ecosystem services in China: A systematic review for twenty years," Ecosystem Services, Elsevier, vol. 52(C).
    16. Muhammad Ziaul Hoque & Shenghui Cui & Imranul Islam & Lilai Xu & Jianxiong Tang, 2020. "Future Impact of Land Use/Land Cover Changes on Ecosystem Services in the Lower Meghna River Estuary, Bangladesh," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    17. Ashebir Woldeyohannes & Marc Cotter & Wubneshe Dessalegn Biru & Girma Kelboro, 2020. "Assessing Changes in Ecosystem Service Values over 1985–2050 in Response to Land Use and Land Cover Dynamics in Abaya-Chamo Basin, Southern Ethiopia," Land, MDPI, vol. 9(2), pages 1-22, January.
    18. Yanru Wang & Xiaojuan Zhang & Peihao Peng, 2021. "Spatio-Temporal Changes of Land-Use/Land Cover Change and the Effects on Ecosystem Service Values in Derong County, China, from 1992–2018," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    19. Xiaoyan Zhang & Jian Ji, 2022. "Spatiotemporal Differentiation of Ecosystem Service Value and Its Drivers in the Jiangsu Coastal Zone, Eastern China," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    20. Haile Belay & Assefa M. Melesse & Getachew Tegegne, 2024. "Scenario-Based Land Use and Land Cover Change Detection and Prediction Using the Cellular Automata–Markov Model in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia," Land, MDPI, vol. 13(3), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15932-:d:1279953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.