IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p15101-d1264129.html
   My bibliography  Save this article

Environmental and Agro-Economic Sustainability of Olive Orchards Irrigated with Reclaimed Water under Deficit Irrigation

Author

Listed:
  • Daniela Vanella

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Simona Consoli

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Alberto Continella

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Gaetano Chinnici

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Mirco Milani

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Giuseppe Luigi Cirelli

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Mario D’Amico

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Giulia Maesano

    (Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Viale Fanin 50, 40127 Bologna, Italy)

  • Alessandra Gentile

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Paolo La Spada

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Francesco Scollo

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Giulia Modica

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Laura Siracusa

    (Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Via Paolo Gaifami 18, 95126 Catania, Italy)

  • Giuseppe Longo-Minnolo

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

  • Salvatore Barbagallo

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy)

Abstract

Increasing the economic and environmental sustainability of irrigated agriculture is a vital challenge for the Mediterranean crop production sector. This study explores the effects of the adoption of reclaimed water (RW) as source of irrigation in conjunction with the application of deficit irrigation strategies in an olive orchard (different genotypes) located within the “Valle dei Margi” farmhouse (Eastern Sicily). Specifically, the RW was obtained in situ by treating the wastewater coming from the farmhouse throughout a nature-based treatment wetland system (TW). The effects of RW on crop water status (CWS) was assessed by conducting plant-based measurements (i.e., leaf water potential, Ψ; and leaves’ relative water content, RWC) and determining satellite-based biophysical indicators. An economic and environmental evaluation of the proposed sustainable irrigation practices was carried out using the life cycle assessment (LCA) approach. The RW quality showed high variability due to fluctuations in the number of customers at the farmhouse during the COVID-19 pandemic period. A strong impact on the variation in Ψ was observed among the olive orchard under the different water regimes, evidencing how CWS performances are conditioned by the genotype. However, no differences in leaves’ RWC and in satellite-based biophysical indicators were detected. Finally, the results of the LCA analysis underlined how the use of RW may permit us to obtain important economic and environmental gains, representing an added value for olive growing for operating in accordance to more sustainable development models.

Suggested Citation

  • Daniela Vanella & Simona Consoli & Alberto Continella & Gaetano Chinnici & Mirco Milani & Giuseppe Luigi Cirelli & Mario D’Amico & Giulia Maesano & Alessandra Gentile & Paolo La Spada & Francesco Scol, 2023. "Environmental and Agro-Economic Sustainability of Olive Orchards Irrigated with Reclaimed Water under Deficit Irrigation," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15101-:d:1264129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/15101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/15101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linda J. Watkin & Laddaporn Ruangpan & Zoran Vojinovic & Sutat Weesakul & Arlex Sanchez Torres, 2019. "A Framework for Assessing Benefits of Implemented Nature-Based Solutions," Sustainability, MDPI, vol. 11(23), pages 1-25, November.
    2. Petousi, I. & Fountoulakis, M.S. & Saru, M.L. & Nikolaidis, N. & Fletcher, L. & Stentiford, E.I. & Manios, T., 2015. "Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees," Agricultural Water Management, Elsevier, vol. 160(C), pages 33-40.
    3. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Consoli, S. & Licciardello, F. & Vanella, D. & Pasotti, L. & Villani, G. & Tomei, F., 2016. "Testing the water balance model criteria using TDR measurements, micrometeorological data and satellite-based information," Agricultural Water Management, Elsevier, vol. 170(C), pages 68-80.
    6. Ayoub, Salam & Al-Shdiefat, Saleh & Rawashdeh, Hamzeh & Bashabsheh, Ibrahim, 2016. "Utilization of reclaimed wastewater for olive irrigation: Effect on soil properties, tree growth, yield and oil content," Agricultural Water Management, Elsevier, vol. 176(C), pages 163-169.
    7. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    8. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    9. Gucci, Riccardo & Caruso, Giovanni & Gennai, Clizia & Esposto, Sonia & Urbani, Stefania & Servili, Maurizio, 2019. "Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development," Agricultural Water Management, Elsevier, vol. 212(C), pages 88-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Alcaide Zaragoza, Carmen & Fernández García, Irene & Martín García, Isabel & Camacho Poyato, Emilio & Rodríguez Díaz, Juan Antonio, 2022. "Spatio-temporal analysis of nitrogen variations in an irrigation distribution network using reclaimed water for irrigating olive trees," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    4. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Alcon, Francisco & Zabala, José A. & Martínez-García, Victor & Albaladejo, José A. & López-Becerra, Erasmo I. & de-Miguel, María D. & Martínez-Paz, José M., 2022. "The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Amira Oueslati & Samia Dabbou & Nosra Methneni & Giuseppe Montevecchi & Vincenzo Nava & Rossana Rando & Giovanni Bartolomeo & Andrea Antonelli & Giuseppa Di Bella & Hedi Ben Mansour, 2023. "Pomological and Olive Oil Quality Characteristics Evaluation under Short Time Irrigation of Olive Trees cv. Chemlali with Untreated Industrial Poultry Wastewater," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    8. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    9. Isaac Zipori & Ran Erel & Uri Yermiyahu & Alon Ben-Gal & Arnon Dag, 2020. "Sustainable Management of Olive Orchard Nutrition: A Review," Agriculture, MDPI, vol. 10(1), pages 1-21, January.
    10. Ben-Gal, Alon & Ron, Yonatan & Yermiyahu, Uri & Zipori, Isaac & Naoum, Sireen & Dag, Arnon, 2021. "Evaluation of regulated deficit irrigation strategies for oil olives: A case study for two modern Israeli cultivars," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Perulli, Giulio Demetrio & Gaggia, Francesca & Sorrenti, Giovambattista & Donati, Irene & Boini, Alexandra & Bresilla, Kushtrim & Manfrini, Luigi & Baffoni, Loredana & Di Gioia, Diana & Grappadelli, L, 2021. "Treated wastewater as irrigation source: a microbiological and chemical evaluation in apple and nectarine trees," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    13. Wen, Shenglin & Cui, Ningbo & Gong, Daozhi & Liu, Chunwei & Xing, Liwen & Wu, Zongjun & Wang, Zhihui & Wang, Jiaxin, 2023. "A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    14. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    16. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    17. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Gao, Zhaoquan & Fan, Jiangchuan & Li, Zhiqiang, 2021. "Dynamic simulation water storage of different parts in peach tree under drought stress," Agricultural Water Management, Elsevier, vol. 244(C).
    19. Russo, David & Laufer, Asher & Bar-Tal, Asher, 2020. "Improving water uptake by trees planted on a clayey soil and irrigated with low-quality water by various management means: A numerical study," Agricultural Water Management, Elsevier, vol. 229(C).
    20. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15101-:d:1264129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.