IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14681-d1256745.html
   My bibliography  Save this article

Structural Heterogeneity of European Beech ( Fagus sylvatica L.) Stands at Its Northernmost Limits

Author

Listed:
  • Diāna Jansone

    (Latvian State Forest Research Institute Silava, Rigas Street 111, LV-2169 Salaspils, Latvia)

  • Roberts Matisons

    (Latvian State Forest Research Institute Silava, Rigas Street 111, LV-2169 Salaspils, Latvia)

  • Viesturs Kārše

    (Forest Faculty, Latvian University of Biosciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia)

  • Endijs Bāders

    (Latvian State Forest Research Institute Silava, Rigas Street 111, LV-2169 Salaspils, Latvia)

  • Dārta Kaupe

    (Latvian State Forest Research Institute Silava, Rigas Street 111, LV-2169 Salaspils, Latvia)

  • Āris Jansons

    (Latvian State Forest Research Institute Silava, Rigas Street 111, LV-2169 Salaspils, Latvia)

Abstract

The expansion of European beech to northeastern regions due to climate change is anticipated, especially if assisted migration techniques are employed. Marginal populations of European beech are exposed to unfavorable growing conditions that are challenging for their survival and multifunctionality. Under such conditions, the structural complexity of stands is a critical factor that supports the sustainability of these populations. In this study, five stands of European beech in Latvia, which are currently the most northeastern stands in Europe, were investigated. In each of the stands, two sample plots (area 500 m 2 ) were randomly established. The dimensions of trees, stem quality features, and spatial structure of the stands were assessed. The stands varied in density but were found to be productive as indicated by comparable tree dimensions to those in core populations. The studied beech stands displayed low species mingling and tended towards monospecies composition, with some structural diversification likely due to small-scale disturbances and varying stand densities, suggesting that spatial diversity was influenced by species composition and competition among trees. The analyzed European beech stands were in the maturing phase, but displayed diverse diameter and height structures, indicating that natural ecological processes were occurring, akin to those found in non-marginal regions. The stem quality of the trees was intermediate, with frequent occurrences of ramicorn, epicormic branches, and forking (41.8%, 53.5%, and 26.3%, respectively), while stem cracks were rare (4.6%). However, these features can provide crucial microhabitats for biodiversity. Therefore, European beech has the potential for diversification in forestry and ensuring sustainability at the edge of its range expansion. The main implications of this study highlight the diverse structural characteristics of the European beech stands, indicating the influence of species competition and small-scale disturbances, providing valuable insights for forest management and conservation strategies. Although, this study has a few potential limitations that should be considered, including the relatively small sample size and the absence of long-term data.

Suggested Citation

  • Diāna Jansone & Roberts Matisons & Viesturs Kārše & Endijs Bāders & Dārta Kaupe & Āris Jansons, 2023. "Structural Heterogeneity of European Beech ( Fagus sylvatica L.) Stands at Its Northernmost Limits," Sustainability, MDPI, vol. 15(20), pages 1-10, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14681-:d:1256745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Ehbrecht & Dominik Seidel & Peter Annighöfer & Holger Kreft & Michael Köhler & Delphine Clara Zemp & Klaus Puettmann & Reuben Nilus & Fred Babweteera & Katharina Willim & Melissa Stiers & Danie, 2021. "Global patterns and climatic controls of forest structural complexity," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    2. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    3. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    4. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    6. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    7. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    9. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    10. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    11. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    13. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    15. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Alexandra M. Cheney & Stephanann M. Costello & Nicholas V. Pinkham & Annie Waldum & Susan C. Broadaway & Maria Cotrina-Vidal & Marc Mergy & Brian Tripet & Douglas J. Kominsky & Heather M. Grifka-Walk , 2023. "Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    19. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    20. Myrto Pantazi & Olivier Klein & Mikhail Kissine, 2020. "Is justice blind or myopic? An examination of the effects of meta-cognitive myopia and truth bias on mock jurors and judges," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(2), pages 214-229, March.
    21. Loreto A Correa & Cecilia León & Juan Ramírez-Estrada & Álvaro Ly-Prieto & Sebastián Abades & Loren D Hayes & Mauricio Soto-Gamboa & Luis A Ebensperger, 2021. "One for all and all for one: phenotype assortment and reproductive success in masculinized females," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1266-1275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14681-:d:1256745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.