IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13749-d1240200.html
   My bibliography  Save this article

Sustainable Energy Progress via Integration of Thermal Energy Storage and Other Performance Enhancement Strategies in FPCs: A Synergistic Review

Author

Listed:
  • Sudhir Kumar Pathak

    (School of Energy Management, Shri Mata Vaishno Devi University, Katra 182320, India)

  • Tagamud Tazmeen

    (School of Energy Management, Shri Mata Vaishno Devi University, Katra 182320, India)

  • K. Chopra

    (School of Energy Management, Shri Mata Vaishno Devi University, Katra 182320, India
    School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra 182320, India)

  • V. V. Tyagi

    (School of Energy Management, Shri Mata Vaishno Devi University, Katra 182320, India)

  • Sanjeev Anand

    (School of Energy Management, Shri Mata Vaishno Devi University, Katra 182320, India)

  • Ammar M. Abdulateef

    (Department of Air Conditioning and Refrigeration Techniques Engineering, Bilad Alrafidain University College, Baqubah 32001, Iraq)

  • A. K. Pandey

    (Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
    Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India)

Abstract

Flat plate collectors (FPCs) are the leading solar thermal technology for low-medium range temperature applications. However, their expansion in developing countries is still lacking because of their poor thermal performance. Improving the thermal performance of flat plate collectors (FPCs) is a crucial concern addressed in this review This study comprehensively discussed the performance improvement methods of FPCs, such as design modification, reflectors, working fluid, and energy storage materials, by covering current issues and future recommendations. Design factors such as coating and glass cover thickness, thickness of absorber plate and material, air gap between the glass cover and absorber plate, and riser spacing, along with insulation materials, are examined for their impact on FPC performance. Absorber design changes with selective coatings for improving the heat transmission rate between the working fluid and absorber are critical for enhancing collectors’ thermal output. The nanofluids utilization improved FPC’s thermal performance in terms of energetic and exergetic outcomes in the 20–30% range. Moreover, adding a heat storage unit extends the operating hours and thermal output fluctuations of FPCs. Research suggests that employing turbulators and nanofluids as heat transfer fluids are particularly effective for enhancing heat transfer in FPCs. This comprehensive review serves as a critical tool for evaluating and comparing various heat transfer augmentation techniques, aiding in the selection of the most suitable option.

Suggested Citation

  • Sudhir Kumar Pathak & Tagamud Tazmeen & K. Chopra & V. V. Tyagi & Sanjeev Anand & Ammar M. Abdulateef & A. K. Pandey, 2023. "Sustainable Energy Progress via Integration of Thermal Energy Storage and Other Performance Enhancement Strategies in FPCs: A Synergistic Review," Sustainability, MDPI, vol. 15(18), pages 1-37, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13749-:d:1240200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    2. Ashour, Amr Fathy & El-Awady, Ahmed T. & Tawfik, Mohsen A., 2022. "Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions," Energy, Elsevier, vol. 240(C).
    3. Balaji, K. & Ganesh Kumar, P. & Sakthivadivel, D. & Vigneswaran, V.S. & Iniyan, S., 2019. "Experimental investigation on flat plate solar collector using frictionally engaged thermal performance enhancer in the absorber tube," Renewable Energy, Elsevier, vol. 142(C), pages 62-72.
    4. Selikhov, Yuriy & Klemeš, Jiří Jaromír & Kapustenko, Petro & Arsenyeva, Olga, 2022. "The study of flat plate solar collector with absorbing elements from a polymer material," Energy, Elsevier, vol. 256(C).
    5. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    6. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 1801-1814.
    7. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Murugan, M. & Vijayan, R. & Saravanan, A. & Jaisankar, S., 2019. "Performance enhancement of centrally finned twist inserted solar collector using corrugated booster reflectors," Energy, Elsevier, vol. 168(C), pages 858-869.
    9. Anirudh, K. & Dhinakaran, S., 2021. "Numerical analysis of the performance improvement of a flat-plate solar collector using conjugated porous blocks," Renewable Energy, Elsevier, vol. 172(C), pages 382-391.
    10. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Kumar, Nitin & Kumar, Raj & Kumar, Anil, 2018. "Heat transfer augmentation in solar thermal collectors using impinging air jets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3179-3190.
    11. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    12. Sharma, Harish Kumar & Kumar, Satish & Verma, Sujit Kumar, 2022. "Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs," Energy, Elsevier, vol. 253(C).
    13. Badiei, Z. & Eslami, M. & Jafarpur, K., 2020. "Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling," Energy, Elsevier, vol. 192(C).
    14. Hellstrom, B & Adsten, M & Nostell, P & Karlsson, B & Wackelgard, E, 2003. "The impact of optical and thermal properties on the performance of flat plate solar collectors," Renewable Energy, Elsevier, vol. 28(3), pages 331-344.
    15. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Ning & Xinyu Huang & Junwei Su & Xiaohu Yang, 2023. "Design and Research of Heat Storage Enhancement by Innovative Wave Fin in a Hot Water–Oil-Displacement System," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    2. Janis Kramens & Oskars Svedovs & Amanda Sturmane & Edgars Vigants & Vladimirs Kirsanovs & Dagnija Blumberga, 2024. "Exploring Energy Security and Independence for Small Energy Users: A Latvian Case Study on Unleashing Stirling Engine Potential," Sustainability, MDPI, vol. 16(3), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    3. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Zhu, T.T. & Wang, T.Y. & Liang, L., 2021. "Numerical evaluation of the thermal performance of different types of double glazing flat-plate solar air collectors," Energy, Elsevier, vol. 233(C).
    4. Geovo, Leonardo & Ri, Guilherme Dal & Kumar, Rahul & Verma, Sujit Kumar & Roberts, Justo J. & Mendiburu, Andrés Z., 2023. "Theoretical model for flat plate solar collectors operating with nanofluids: Case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 263(PB).
    5. Omer A. Alawi & Haslinda Mohamed Kamar & Abdul Rahman Mallah & Hussein A. Mohammed & Mohd Aizad Sazrul Sabrudin & Kazi Md. Salim Newaz & Gholamhassan Najafi & Zaher Mundher Yaseen, 2021. "Experimental and Theoretical Analysis of Energy Efficiency in a Flat Plate Solar Collector Using Monolayer Graphene Nanofluids," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    6. Jianhao Sheng & Dianwei Qi & Hongchao Yan & Wanjiang Wang & Tao Wang, 2022. "Experimental Study on Low Carbonization of Green Building Based on New Membrane Structure Solar Sustainable Heat Collection," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    7. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    9. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    10. Ayomide Titus Ogungbemi & Humphrey Adun & Michael Adedeji & Doga Kavaz & Mustafa Dagbasi, 2022. "Does Particle Size in Nanofluid Synthesis Affect Their Performance as Heat Transfer Fluid in Flat Plate Collectors?—An Energy and Exergy Analysis," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    11. Verma, Sujit Kumar & Sharma, Kamal & Gupta, Naveen Kumar & Soni, Pawan & Upadhyay, Neeraj, 2020. "“Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector”," Energy, Elsevier, vol. 194(C).
    12. Wan Afin Fadzlin & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Zafar Said, 2022. "Global Challenges of Current Building-Integrated Solar Water Heating Technologies and Its Prospects: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-42, July.
    13. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    14. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    15. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    16. Chii-Dong Ho & Hsuan Chang & Zih-Syuan Hong & Chien-Chang Huang & Yu-Han Chen, 2020. "Increasing the Device Performance of Recycling Double-Pass W-Ribs Solar Air Heaters," Energies, MDPI, vol. 13(9), pages 1-16, April.
    17. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    18. Ma, Ruihua & Ma, Dongyan & Ma, Ruijiang & Long, Enshen, 2022. "Theoretical and experimental analysis of temperature variation of V–Ti black ceramic solar collector," Renewable Energy, Elsevier, vol. 194(C), pages 1153-1162.
    19. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    20. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13749-:d:1240200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.