IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13303-d1233268.html
   My bibliography  Save this article

Formaldehyde Removal by Expanded Clay Pellets and Biofilm in Hydroponics of a Green Wall System

Author

Listed:
  • Laura Žorža

    (Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia)

  • Kristīne Ceļmalniece

    (Institute of Food Safety, Animal Health and Environment, BIOR, 3 Lejupes Str., LV-1076 Riga, Latvia)

  • Alise Sieriņa

    (Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
    Lafivents Ltd., 1B K.Ulmana Ave., LV-1004 Riga, Latvia)

  • Una Andersone-Ozola

    (Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia)

  • Tūrs Selga

    (Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia)

  • Gederts Ievinsh

    (Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia)

  • Buka Bērziņa

    (Lafivents Ltd., 1B K.Ulmana Ave., LV-1004 Riga, Latvia)

  • Vadims Bartkevičs

    (Institute of Food Safety, Animal Health and Environment, BIOR, 3 Lejupes Str., LV-1076 Riga, Latvia)

  • Olga Muter

    (Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia)

Abstract

Air pollution with formaldehyde (FA) has been an emerging concern over recent years. This study was aimed at evaluating the contribution of green wall system-derived expanded clay pellets (ECP) and biofilms to FA removal in liquid phase. The effects of four plant species on this process were compared. An inhibition of the fluorescein diacetate hydrolysis activity of biofilm-derived microorganisms was detected during the exposure to FA in both air and liquid phases, and this effect was plant-species-specific. Liquid chromatography with a UV detector was applied for the quantification of FA. The FA removal activity of ECP in the liquid phase was 76.5 mg ECP −1 after a 24 h incubation in the presence of 100 mg/L FA, while the removal activity of the biofilm differed depending on the plant species used, with the highest values detected in the set with Mentha aquatica , i.e., 59.2 mg ECP −1 . The overall FA removal from the liquid phase during 24 h varied in the range from 63% to 82% with the initial FA concentration of 100 mg/L. Differences in biofilm formation upon ECP enrichment were detected by using confocal laser scanning microscopy. These results contribute to the understanding of air biofiltration mechanisms in hydroponic systems.

Suggested Citation

  • Laura Žorža & Kristīne Ceļmalniece & Alise Sieriņa & Una Andersone-Ozola & Tūrs Selga & Gederts Ievinsh & Buka Bērziņa & Vadims Bartkevičs & Olga Muter, 2023. "Formaldehyde Removal by Expanded Clay Pellets and Biofilm in Hydroponics of a Green Wall System," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13303-:d:1233268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    3. Natalia Shushunova & Elena Korol & Elisaveta Luzay & Diana Shafieva, 2023. "Impact of the Innovative Green Wall Modular Systems on the Urban Air," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    4. Yue Yang & Kai Hu & Yibiao Liu & Zhihuang Wang & Kaihong Dong & Peijuan Lv & Xing Shi, 2023. "Optimisation of Building Green Performances Using Vertical Greening Systems: A Case Study in Changzhou, China," Sustainability, MDPI, vol. 15(5), pages 1-30, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Taotao & Kong, Fanhua & Yin, Haiwei & Cook, Lauren M. & Middel, Ariane & Yang, Shaoqi, 2023. "Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Nikolaos Ntoulas & Georgios Papaioannou & Konstantinos Bertsouklis & Panayiotis A. Nektarios, 2024. "Tolerance of Tall Fescue ( Festuca arundinacea Schreb.) Growing in Extensive Green Roof Systems to Saline Water Irrigation with Varying Leaching Fractions," Land, MDPI, vol. 13(2), pages 1-14, January.
    4. Jon Laurenz & Jone Belausteguigoitia & Ander de la Fuente & Daniel Roehr, 2021. "Green Urban (RE) Generation: A Research and Practice Methodology to Better Implement Green Urban Infrastructure Solutions," Land, MDPI, vol. 10(12), pages 1-24, December.
    5. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    6. Luca Evangelisti & Claudia Guattari & Gianluca Grazieschi & Marta Roncone & Francesco Asdrubali, 2020. "On the Energy Performance of an Innovative Green Roof in the Mediterranean Climate," Energies, MDPI, vol. 13(19), pages 1-18, October.
    7. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    8. Ángel Pitarch & María José Ruá & Lucía Reig & Inés Arín, 2020. "Contribution of Roof Refurbishment to Urban Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    9. Gabriela Soreanu & Catalin Tanase & Constantin Mardari & Dragos Lucian Gorgan & Igor Cretescu, 2024. "Physiological Investigations of the Plants Involved in Air Biofiltration: Study Case," Sustainability, MDPI, vol. 16(4), pages 1-12, February.
    10. Jiang, Wei & Zhang, Kuan & Ma, Lingyong & Liu, Bo & Li, Qing & Li, Dong & Qi, Hanbing & Liu, Yang, 2022. "Energy-saving retrofits of prefabricated house roof in severe cold area," Energy, Elsevier, vol. 254(PC).
    11. Marvuglia, Antonino & Koppelaar, Rembrandt & Rugani, Benedetto, 2020. "The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities," Ecological Modelling, Elsevier, vol. 438(C).
    12. Natalia Sergeevna Shushunova & Elena Anatolyevna Korol & Nikolai Ivanovich Vatin, 2021. "Modular Green Roofs for the Sustainability of the Built Environment: The Installation Process," Sustainability, MDPI, vol. 13(24), pages 1-11, December.
    13. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    15. Sinem Yıldırım & Çimen Özburak & Özge Özden, 2023. "Green Roofs, Vegetation Types, Impact on the Thermal Effectiveness: An Experimental Study in Cyprus," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    16. Eda Kale & Marie De Groeve & Lena Pinnel & Yonca Erkan & Piraye Hacigüzeller & Scott Allan Orr & Tim De Kock, 2023. "Mapping Vertical Greening on Urban Built Heritage Exposed to Environmental Stressors–A Case Study in Antwerp, Belgium," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    17. Peter Juras, 2022. "Positive Aspects of Green Roof Reducing Energy Consumption in Winter," Energies, MDPI, vol. 15(4), pages 1-14, February.
    18. Francesco Nocera & Rosa Caponetto & Giada Giuffrida & Maurizio Detommaso, 2020. "Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study," Energies, MDPI, vol. 13(12), pages 1-17, June.
    19. Natalia Shushunova & Elena Korol & Elisaveta Luzay & Diana Shafieva, 2023. "Impact of the Innovative Green Wall Modular Systems on the Urban Air," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    20. Jessica Settino & Cristina Carpino & Stefania Perrella & Natale Arcuri, 2020. "Multi-Objective Analysis of a Fixed Solar Shading System in Different Climatic Areas," Energies, MDPI, vol. 13(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13303-:d:1233268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.