IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p13203-d1231635.html
   My bibliography  Save this article

EnergyAuction: IoT-Blockchain Architecture for Local Peer-to-Peer Energy Trading in a Microgrid

Author

Listed:
  • Felipe Condon

    (Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile)

  • Patricia Franco

    (Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile)

  • José M. Martínez

    (Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile)

  • Ali M. Eltamaly

    (Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
    Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

  • Young-Chon Kim

    (Department of Computer Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea)

  • Mohamed A. Ahmed

    (Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile)

Abstract

The widespread adoption of distributed energy resources (DERs) and the progress made in internet of things (IoT) and cloud computing technologies have enabled and facilitated the development of various smart grid applications and services. This study aims to develop and implement a peer-to-peer (P2P) energy trading platform that allows local energy trading between consumers and prosumers within a microgrid which combines IoT and blockchain technologies. The proposed platform comprises an IoT-cloud home energy management system (HEMS) responsible for gathering and storing energy consumption data and incorporates a blockchain framework that ensures secure and transparent energy trading. The proposed IoT–blockchain architecture utilizes a Chainlink oracle network and a private Ethereum blockchain. Through the use of smart contracts, consumers and prosumers can participate in an open auction to trade energy, while the settlement process involves acquiring external energy data from an API through the oracle network. The performance of the platform is evaluated through a testbed scenario using real-world energy data from a real house in Valparaiso, Chile, while storing those measurements in AWS cloud, validating the feasibility of the proposed architecture in enabling local energy trading. This work contributes to the development of energy management systems by providing a real-world implementation of an IoT–blockchain architecture for local energy trading. The integration of these technologies will allow for a more efficient and secure energy trading system that can benefit prosumers, consumers, and utilities.

Suggested Citation

  • Felipe Condon & Patricia Franco & José M. Martínez & Ali M. Eltamaly & Young-Chon Kim & Mohamed A. Ahmed, 2023. "EnergyAuction: IoT-Blockchain Architecture for Local Peer-to-Peer Energy Trading in a Microgrid," Sustainability, MDPI, vol. 15(17), pages 1-28, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13203-:d:1231635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/13203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/13203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    2. Wu, Ying & Wu, Yanpeng & Cimen, Halil & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading," Applied Energy, Elsevier, vol. 314(C).
    3. Bhargav Appasani & Sunil Kumar Mishra & Amitkumar V. Jha & Santosh Kumar Mishra & Florentina Magda Enescu & Ioan Sorin Sorlei & Fernando Georgel Bîrleanu & Noureddine Takorabet & Phatiphat Thounthong , 2022. "Blockchain-Enabled Smart Grid Applications: Architecture, Challenges, and Solutions," Sustainability, MDPI, vol. 14(14), pages 1-33, July.
    4. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    5. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    6. Juhar Abdella & Khaled Shuaib, 2018. "Peer to Peer Distributed Energy Trading in Smart Grids: A Survey," Energies, MDPI, vol. 11(6), pages 1-22, June.
    7. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    8. Giulio Caldarelli, 2022. "Overview of Blockchain Oracle Research," Future Internet, MDPI, vol. 14(6), pages 1-38, June.
    9. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
    4. Maarten Evens & Patricia Ercoli & Alessia Arteconi, 2023. "Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management," Energies, MDPI, vol. 16(18), pages 1-24, September.
    5. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    7. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Christie Etukudor & Benoit Couraud & Valentin Robu & Wolf-Gerrit Früh & David Flynn & Chinonso Okereke, 2020. "Automated Negotiation for Peer-to-Peer Electricity Trading in Local Energy Markets," Energies, MDPI, vol. 13(4), pages 1-19, February.
    9. Felipe Condon Silva & Mohamed A. Ahmed & José Manuel Martínez & Young-Chon Kim, 2019. "Design and Implementation of a Blockchain-Based Energy Trading Platform for Electric Vehicles in Smart Campus Parking Lots," Energies, MDPI, vol. 12(24), pages 1-25, December.
    10. Rodrigues, Stefane Dias & Garcia, Vinicius Jacques, 2023. "Transactive energy in microgrid communities: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    12. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    13. Cremers, Sho & Robu, Valentin & Zhang, Peter & Andoni, Merlinda & Norbu, Sonam & Flynn, David, 2023. "Efficient methods for approximating the Shapley value for asset sharing in energy communities," Applied Energy, Elsevier, vol. 331(C).
    14. Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Bharati S. Ainapure & Nicu Bizon, 2023. "A Blockchain-Enabled Approach for Enhancing Synchrophasor Measurement in Smart Grid 3.0," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    15. Marco Schletz & Ana Cardoso & Gabriela Prata Dias & Søren Salomo, 2020. "How Can Blockchain Technology Accelerate Energy Efficiency Interventions? A Use Case Comparison," Energies, MDPI, vol. 13(22), pages 1-23, November.
    16. Ante, L. & Steinmetz, F. & Fiedler, I., 2021. "Blockchain and energy: A bibliometric analysis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    18. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    19. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13203-:d:1231635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.