IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12873-d1225237.html
   My bibliography  Save this article

Estimating Public Transportation Accessibility in Metropolitan Areas: A Case Study and Comparative Analysis

Author

Listed:
  • Haitao Su

    (Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China)

  • Menghan Li

    (Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China)

  • Xiaofeng Zhong

    (Department of Industrial Engineering, Tsinghua University, Beijing 100084, China)

  • Kai Zhang

    (Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
    Research Institute of Tsinghua, Pearl River Delta, Guangzhou 510530, China)

  • Jingkai Wang

    (Graduate School of Humanity and Social Science, Kagoshima University, Kagoshima-ken 890-8580, Japan)

Abstract

Accessibility-oriented public transportation planning can improve the operational efficiency of public transportation, guide orderly urban development, and alleviate issues such as traffic congestion, environmental pollution, and resource consumption in large cities. To promote the practical application and widespread adoption of public transportation accessibility estimating systems, this study proposes an improved public transport accessibility levels (PTAL) method. It innovatively incorporates residents’ preference indices for different modes of transportation and addresses the challenge of missing timetable data in the calculation process. Using actual data from Shenzhen, a case study is conducted to analyze the public transportation accessibility index and compare the results obtained through k-means clustering, the equal spacing method, the quantile method, and the application of the London PTAL method. The research findings indicate that the optimal number of clusters for public transportation accessibility index analysis in large cities is six when using clustering algorithms. Among the statistical analysis methods, the quantile method shows favorable performance. Furthermore, a comprehensive comparison of different classification methods confirms that the improved PTAL method offers better discrimination in estimating public transportation accessibility levels compared to the London PTAL method. The study concludes by providing guidance on how cities with different characteristics can reference the improved PTAL method.

Suggested Citation

  • Haitao Su & Menghan Li & Xiaofeng Zhong & Kai Zhang & Jingkai Wang, 2023. "Estimating Public Transportation Accessibility in Metropolitan Areas: A Case Study and Comparative Analysis," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12873-:d:1225237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Chen & Xinglu Liu & Lixin Miao & Peng Yang, 2020. "Electric Vehicle Tour Planning Considering Range Anxiety," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    2. Mizuki Kawabata & Qing Shen, 2006. "Job Accessibility as an Indicator of Auto-Oriented Urban Structure: A Comparison of Boston and Los Angeles with Tokyo," Environment and Planning B, , vol. 33(1), pages 115-130, February.
    3. Zhicheng Zheng & Haoming Xia & Shrinidhi Ambinakudige & Yaochen Qin & Yang Li & Zhixiang Xie & Lijun Zhang & Haibin Gu, 2019. "Spatial Accessibility to Hospitals Based on Web Mapping API: An Empirical Study in Kaifeng, China," Sustainability, MDPI, vol. 11(4), pages 1-14, February.
    4. Elmira Jamei & Melissa Chan & Hing Wah Chau & Eric Gaisie & Katrin Lättman, 2022. "Perceived Accessibility and Key Influencing Factors in Transportation," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    5. van Wee, Bert & de Jong, Tom, 2023. "Differences in levels of accessibility: The importance of spatial scale when measuring distributions of the accessibility of health and emergency services," Journal of Transport Geography, Elsevier, vol. 106(C).
    6. Mizuki Kawabata, 2009. "Spatiotemporal Dimensions of Modal Accessibility Disparity in Boston and San Francisco," Environment and Planning A, , vol. 41(1), pages 183-198, January.
    7. Sini Wang & Zhongyi Zuo & Yan Liu, 2023. "Study on Location of Bus Stop in Subway Service Area Based on Residents’ Travel Accessibility," Sustainability, MDPI, vol. 15(5), pages 1-16, March.
    8. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martens, Karel & Golub, Aaron & Robinson, Glenn, 2012. "A justice-theoretic approach to the distribution of transportation benefits: Implications for transportation planning practice in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 684-695.
    2. Dewulf, Bart & Neutens, Tijs & Vanlommel, Mario & Logghe, Steven & De Maeyer, Philippe & Witlox, Frank & De Weerdt, Yves & Van de Weghe, Nico, 2015. "Examining commuting patterns using Floating Car Data and circular statistics: Exploring the use of new methods and visualizations to study travel times," Journal of Transport Geography, Elsevier, vol. 48(C), pages 41-51.
    3. Sohee Lee & Tsutomu Suzuki, 2016. "A scenario approach to the evaluation of sustainable urban structure for reducing carbon dioxide emissions in Seoul," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(1), pages 30-48, March.
    4. Moniruzzaman, Md & Páez, Antonio, 2012. "Accessibility to transit, by transit, and mode share: application of a logistic model with spatial filters," Journal of Transport Geography, Elsevier, vol. 24(C), pages 198-205.
    5. David S. Vale & Fernando Ascensão & Nuno Raposo & António Pedro Figueiredo, 2017. "Comparing access for all: disability-induced accessibility disparity in Lisbon," Journal of Geographical Systems, Springer, vol. 19(1), pages 43-64, January.
    6. Sune Djurhuus & Henning Sten Hansen & Mette Aadahl & Charlotte Glümer, 2016. "Building a multimodal network and determining individual accessibility by public transportation," Environment and Planning B, , vol. 43(1), pages 210-227, January.
    7. Sun, Zhe & Zacharias, John, 2020. "Transport equity as relative accessibility in a megacity: Beijing," Transport Policy, Elsevier, vol. 92(C), pages 8-19.
    8. Fayyaz, S. Kiavash & Liu, Xiaoyue Cathy & Porter, Richard J., 2017. "Dynamic transit accessibility and transit gap causality analysis," Journal of Transport Geography, Elsevier, vol. 59(C), pages 27-39.
    9. Merlin, Louis A. & Hu, Lingqian, 2017. "Does competition matter in measures of job accessibility? Explaining employment in Los Angeles," Journal of Transport Geography, Elsevier, vol. 64(C), pages 77-88.
    10. Yan, Xiang & Bejleri, Ilir & Zhai, Liang, 2022. "A spatiotemporal analysis of transit accessibility to low-wage jobs in Miami-Dade County," Journal of Transport Geography, Elsevier, vol. 98(C).
    11. Andrew Schouten, 2022. "Residential relocations and changes in vehicle ownership," Transportation, Springer, vol. 49(1), pages 89-113, February.
    12. Boarnet, Marlon G. & Giuliano, Genevieve & Hou, Yuting & Shin, Eun Jin, 2017. "First/last mile transit access as an equity planning issue," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 296-310.
    13. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Singer, Matan E. & Cohen-Zada, Aviv L. & Martens, Karel, 2022. "Core versus periphery: Examining the spatial patterns of insufficient accessibility in U.S. metropolitan areas," Journal of Transport Geography, Elsevier, vol. 100(C).
    15. Mohíno, Inmaculada & Ureña, José M. & Solís, Eloy, 2016. "Transport infrastructure and territorial cohesion in rural metro-adjacent regions: A multimodal accessibility approach. The case of Castilla-La Mancha in the context of Madrid (Spain)," Journal of Transport Geography, Elsevier, vol. 57(C), pages 115-133.
    16. Jen-Jia Lin & Chi-Hau Chen & Tsung-Yu Hsieh, 2016. "Job accessibility and ethnic minority employment in urban and rural areas in Taiwan," Papers in Regional Science, Wiley Blackwell, vol. 95(2), pages 363-382, June.
    17. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    18. Tanya Suhoy & Yotam Sofer, 2019. "Getting to Work in Israel: Locality and Individual Effects," Bank of Israel Working Papers 2019.02, Bank of Israel.
    19. Mizuki Kawabata, 2009. "Spatiotemporal Dimensions of Modal Accessibility Disparity in Boston and San Francisco," Environment and Planning A, , vol. 41(1), pages 183-198, January.
    20. Siqi Lai & Brian Deal, 2022. "Parks, Green Space, and Happiness: A Spatially Specific Sentiment Analysis Using Microblogs in Shanghai, China," Sustainability, MDPI, vol. 15(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12873-:d:1225237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.