IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12446-d1218331.html
   My bibliography  Save this article

Development and Characterization of Coal-Based Thermoplastic Composite Material for Sustainable Construction

Author

Listed:
  • Haibin Zhang

    (School of Civil Engineering and Architecture, Hainan University, Haikou 570228, China
    Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA)

  • Wenyu Liao

    (Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA)

  • Genda Chen

    (Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA)

  • Hongyan Ma

    (Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA)

Abstract

The exploitation of coal and the disposal of waste plastic present significant environmental and economic challenges that require sustainable and profitable solutions. In response, we propose a renewable construction composite material of coal-based thermoplastic composite (CTC) that can be made from low-grade coal and plastic waste. We developed and tested the hot-press fabrication method for this CTC, using coal with a maximum particle size of 4.75 mm and recycled high-density polyethylene (HDPE). The effects of the coal fraction (50–80 wt%) on compressive properties, thermal properties, microstructure, and ecological and economic efficiencies of the CTC were investigated. Test results revealed that the compressive strength and modulus decrease as the coal fraction increases. However, the thermal properties, including thermal conductivity and specific heat, increase with higher coal contents. Compared to concrete, the CTC has about half the thermal conductivity and twice the specific heat, making it a more energy-efficient construction material. Microstructure testing helped to reveal the mechanisms behind the above behaviors of CTC from the observation of binder volume, bonding quality between coal and HDPE, and porosity variation. The life cycle analysis indicated that the CTC production reduced embodied energy, carbon footprint, and cost by up to 84%, 73%, and 14%, respectively. Therefore, we recommend the CTC with 50–70% coal fraction as an innovative construction material with satisfied mechanical and thermal properties, better cost efficiency, and a reduced ecological impact.

Suggested Citation

  • Haibin Zhang & Wenyu Liao & Genda Chen & Hongyan Ma, 2023. "Development and Characterization of Coal-Based Thermoplastic Composite Material for Sustainable Construction," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12446-:d:1218331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergei, Kostikov & Shen, Chao & Jiang, Yiqiang, 2020. "A review of the current work potential of a trombe wall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    2. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    3. Li, Niansi & Gu, Tao & Li, Yulin & Liu, Xiaoyong & Ji, Jie & Yu, Bendong, 2023. "The performance investigation on a multifunctional wall with photo-thermal catalytic blinds for heating, shading and formaldehyde removal," Energy, Elsevier, vol. 279(C).
    4. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    5. Sheel Bhadra & Niloy Sen & Akshay K K & Harmeet Singh & Paul G. O’Brien, 2023. "Design and Evaluation of a Water-Based, Semitransparent Photovoltaic Thermal Trombe Wall," Energies, MDPI, vol. 16(4), pages 1-15, February.
    6. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Ruta Vanaga & Jānis Narbuts & Ritvars Freimanis & Andra Blumberga, 2022. "Laboratory Testing of Small Scale Solar Facade Module with Phase Change Material and Adjustable Insulation Layer," Energies, MDPI, vol. 15(3), pages 1-20, February.
    8. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    9. Li, Ao & Duan, Shuangping & Han, Rubing & Wang, Chaoyu, 2022. "Investigation on the dynamic thermal storage/release of the integrated PCM solar wall embedded with an evaporator," Renewable Energy, Elsevier, vol. 200(C), pages 1506-1516.
    10. Yuewei Zhu & Tao Zhang & Qingsong Ma & Hiroatsu Fukuda, 2022. "Thermal Performance and Optimizing of Composite Trombe Wall with Temperature-Controlled DC Fan in Winter," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    11. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    12. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    13. Wang, Chuyao & Ji, Jie, 2023. "Comprehensive performance analysis of a rural building integrated PV/T wall in hot summer and cold winter region," Energy, Elsevier, vol. 282(C).
    14. Liu, Huifang & Li, Peijia & Yu, Bendong & Zhang, Mingyi & Tan, Qianli & Wang, Yu, 2022. "The performance analysis of a high-efficiency dual-channel Trombe wall in winter," Energy, Elsevier, vol. 253(C).
    15. Qing Yin & Hengyu Liu & Tianfu Zhou, 2023. "CiteSpace-Based Visualization Analysis on the Trombe Wall in Solar Buildings," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
    16. Chi, Fang'ai & Liu, Yang & Yan, Jianxiong, 2021. "Integration of Radiative-based air temperature regulating system into residential building for energy saving," Applied Energy, Elsevier, vol. 301(C).
    17. Zhu, Na & Deng, Renjie & Hu, Pingfang & Lei, Fei & Xu, Linghong & Jiang, Zhangning, 2021. "Coupling optimization study of key influencing factors on PCM trombe wall for year thermal management," Energy, Elsevier, vol. 236(C).
    18. Xiao, Yuling & Zhang, Tao & Liu, Zihao & Fei, Fan & Fukuda, Hiroatsu, 2023. "Optimizing energy efficiency in HSCW buildings in China through temperature-controlled PCM Trombe wall system," Energy, Elsevier, vol. 278(PB).
    19. Zhou, Shiqiang & Razaqpur, A. Ghani, 2022. "Efficient heating of buildings by passive solar energy utilizing an innovative dynamic building envelope incorporating phase change material," Renewable Energy, Elsevier, vol. 197(C), pages 305-319.
    20. Yu, Bendong & Li, Niansi & Xie, Hao & Ji, Jie, 2021. "The performance analysis on a novel purification-cleaning trombe wall based on solar thermal sterilization and thermal catalytic principles," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12446-:d:1218331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.