IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1158-d742224.html
   My bibliography  Save this article

Laboratory Testing of Small Scale Solar Facade Module with Phase Change Material and Adjustable Insulation Layer

Author

Listed:
  • Ruta Vanaga

    (Institute of Energy Systems and Environment, Riga Technical University, LV-1048 Riga, Latvia)

  • Jānis Narbuts

    (Institute of Energy Systems and Environment, Riga Technical University, LV-1048 Riga, Latvia)

  • Ritvars Freimanis

    (Institute of Energy Systems and Environment, Riga Technical University, LV-1048 Riga, Latvia)

  • Andra Blumberga

    (Institute of Energy Systems and Environment, Riga Technical University, LV-1048 Riga, Latvia)

Abstract

Active building envelopes that act as energy converters—gathering on-site available renewable energy and converting it to thermal energy or electricity—is a promising technological design niche to reduce energy consumption in the building sector, cut greenhouse gas emissions, and thus tackle climate change challenges. This research adds scientific knowledge in the field of composite building envelope structures containing phase-change materials for thermal energy storage. In this study, the focus lies on the cooling phase of the diurnal gain and release of solar energy. The experimental setup imitates day and night environment. Six alterations of small-scale solar facade modules are tested in two different configurations—with and without the adjustable insulation layer on their outer surface during the discharging phase. Modules explore combinations of aerogel, air gap, and Fresnel lenses for solar energy concentration. The results allow us to compare the impact of the application of an additional insulation layer at “night” for different designs of solar facade modules. The results show that modules with an air gap provide higher heat gains but do not take full advantage of the latent heat capacity of phase-change materials.

Suggested Citation

  • Ruta Vanaga & Jānis Narbuts & Ritvars Freimanis & Andra Blumberga, 2022. "Laboratory Testing of Small Scale Solar Facade Module with Phase Change Material and Adjustable Insulation Layer," Energies, MDPI, vol. 15(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1158-:d:742224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergei, Kostikov & Shen, Chao & Jiang, Yiqiang, 2020. "A review of the current work potential of a trombe wall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    2. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    3. Li, Niansi & Gu, Tao & Li, Yulin & Liu, Xiaoyong & Ji, Jie & Yu, Bendong, 2023. "The performance investigation on a multifunctional wall with photo-thermal catalytic blinds for heating, shading and formaldehyde removal," Energy, Elsevier, vol. 279(C).
    4. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    5. Sheel Bhadra & Niloy Sen & Akshay K K & Harmeet Singh & Paul G. O’Brien, 2023. "Design and Evaluation of a Water-Based, Semitransparent Photovoltaic Thermal Trombe Wall," Energies, MDPI, vol. 16(4), pages 1-15, February.
    6. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    8. Li, Ao & Duan, Shuangping & Han, Rubing & Wang, Chaoyu, 2022. "Investigation on the dynamic thermal storage/release of the integrated PCM solar wall embedded with an evaporator," Renewable Energy, Elsevier, vol. 200(C), pages 1506-1516.
    9. Yuewei Zhu & Tao Zhang & Qingsong Ma & Hiroatsu Fukuda, 2022. "Thermal Performance and Optimizing of Composite Trombe Wall with Temperature-Controlled DC Fan in Winter," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    10. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    11. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    12. Haibin Zhang & Wenyu Liao & Genda Chen & Hongyan Ma, 2023. "Development and Characterization of Coal-Based Thermoplastic Composite Material for Sustainable Construction," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    13. Wang, Chuyao & Ji, Jie, 2023. "Comprehensive performance analysis of a rural building integrated PV/T wall in hot summer and cold winter region," Energy, Elsevier, vol. 282(C).
    14. Liu, Huifang & Li, Peijia & Yu, Bendong & Zhang, Mingyi & Tan, Qianli & Wang, Yu, 2022. "The performance analysis of a high-efficiency dual-channel Trombe wall in winter," Energy, Elsevier, vol. 253(C).
    15. María M. Villar-Ramos & Iván Hernández-Pérez & Karla M. Aguilar-Castro & Ivett Zavala-Guillén & Edgar V. Macias-Melo & Irving Hernández-López & Juan Serrano-Arellano, 2022. "A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings," Energies, MDPI, vol. 15(17), pages 1-31, August.
    16. Qing Yin & Hengyu Liu & Tianfu Zhou, 2023. "CiteSpace-Based Visualization Analysis on the Trombe Wall in Solar Buildings," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
    17. Chi, Fang'ai & Liu, Yang & Yan, Jianxiong, 2021. "Integration of Radiative-based air temperature regulating system into residential building for energy saving," Applied Energy, Elsevier, vol. 301(C).
    18. Zhu, Na & Deng, Renjie & Hu, Pingfang & Lei, Fei & Xu, Linghong & Jiang, Zhangning, 2021. "Coupling optimization study of key influencing factors on PCM trombe wall for year thermal management," Energy, Elsevier, vol. 236(C).
    19. Xiao, Yuling & Zhang, Tao & Liu, Zihao & Fei, Fan & Fukuda, Hiroatsu, 2023. "Optimizing energy efficiency in HSCW buildings in China through temperature-controlled PCM Trombe wall system," Energy, Elsevier, vol. 278(PB).
    20. Zhou, Shiqiang & Razaqpur, A. Ghani, 2022. "Efficient heating of buildings by passive solar energy utilizing an innovative dynamic building envelope incorporating phase change material," Renewable Energy, Elsevier, vol. 197(C), pages 305-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1158-:d:742224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.