IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10714-d1188935.html
   My bibliography  Save this article

Investigating the Effects of Automated Vehicles on Large Urban Road Networks: Some Evidence from Rome

Author

Listed:
  • Umberto Crisalli

    (Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Andrea Gemma

    (Department of Civil, Computer Science and Aeronautical Technologies Engineering, Roma Tre University, 00146 Rome, Italy)

  • Marco Petrelli

    (Department of Civil, Computer Science and Aeronautical Technologies Engineering, Roma Tre University, 00146 Rome, Italy)

Abstract

This paper explores the possibility of applying simulation models formalized in the macrosimulation approach to predict the effects from the presence of automated vehicles in our cities. It is based on the use of a robust equilibrium assignment model allowing us to obtain multiclass traffic flows, including automated vehicles (AVs) and conventional ones (CVs) on large real-sized road networks. This modelling framework has been successfully applied to the road network of the metropolitan area of Rome, allowing us to assess the effects of AVs in future traffic at increasing penetration rates and the effects of possible transport policies involving AVs.

Suggested Citation

  • Umberto Crisalli & Andrea Gemma & Marco Petrelli, 2023. "Investigating the Effects of Automated Vehicles on Large Urban Road Networks: Some Evidence from Rome," Sustainability, MDPI, vol. 15(13), pages 1-10, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10714-:d:1188935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    2. Wen-Xing, Zhu & Li-Dong, Zhang, 2018. "A new car-following model for autonomous vehicles flow with mean expected velocity field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2154-2165.
    3. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
    4. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    5. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    6. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    7. Chen, Danjue & Ahn, Soyoung & Chitturi, Madhav & Noyce, David A., 2017. "Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 196-221.
    8. Bradley Kloostra & Matthew J. Roorda, 2019. "Fully autonomous vehicles: analyzing transportation network performance and operating scenarios in the Greater Toronto Area, Canada," Transportation Planning and Technology, Taylor & Francis Journals, vol. 42(2), pages 99-112, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    2. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    3. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    4. Gelauff, George & Ossokina, Ioulia & Teulings, Coen, 2019. "Spatial and welfare effects of automated driving: Will cities grow, decline or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 277-294.
    5. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    6. Liu, Peng & Xu, Shu-Xian & Ong, Ghim Ping & Tian, Qiong & Ma, Shoufeng, 2021. "Effect of autonomous vehicles on travel and urban characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 128-148.
    7. Qingyu Luo & Rui Du & Hongfei Jia & Lili Yang, 2022. "Research on the Deployment of Joint Dedicated Lanes for CAVs and Buses," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    8. Li, Pengbo & Tian, Lijun & Xiao, Feng & Zhu, Hongwei, 2022. "Can day-to-day dynamic model be solved analytically? New insights on portraying equilibrium and accommodating autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 374-395.
    9. Ma, Ke & Wang, Hao & Ruan, Tiancheng, 2021. "Analysis of road capacity and pollutant emissions: Impacts of Connected and automated vehicle platoons on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    10. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    11. Chen, Shukai & Wang, Hua & Xiao, Ling & Meng, Qiang, 2022. "Random capacity for a single lane with mixed autonomous and human-driven vehicles: Bounds, mean gaps and probability distributions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    12. Muhammad Azam & Sitti Asmah Hassan & Othman Che Puan, 2022. "Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    13. Jiang, Yangsheng & Sun, Siyuan & Zhu, Fangyi & Wu, Yunxia & Yao, Zhihong, 2023. "A mixed capacity analysis and lane management model considering platoon size and intensity of CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    14. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    15. Ziakopoulos, Apostolos & Oikonomou, Maria G. & Vlahogianni, Eleni I. & Yannis, George, 2021. "Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network," Transport Policy, Elsevier, vol. 114(C), pages 233-244.
    16. Chen, Jianzhong & Liang, Huan & Li, Jing & Xu, Zhaoxin, 2021. "A novel distributed cooperative approach for mixed platoon consisting of connected and automated vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    17. Li, Jia & Chen, Di & Zhang, Michael, 2022. "Equilibrium modeling of mixed autonomy traffic flow based on game theory," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 110-127.
    18. Bahrami, Sina & Roorda, Matthew J., 2020. "Optimal traffic management policies for mixed human and automated traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 130-143.
    19. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    20. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10714-:d:1188935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.