IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10339-d1183541.html
   My bibliography  Save this article

Preliminary Study of Bioelectricity Generation Using Lettuce Waste as Substrate by Microbial Fuel Cells

Author

Listed:
  • Walter Rojas-Villacorta

    (Programa de Investigación Formativa e Integridad Científica, Universidad César Vallejo, Trujillo 13001, Peru)

  • Segundo Rojas-Flores

    (Vicerrectorado de Investigación, Universidad Autónoma del Perú, Lima 15842, Peru)

  • Santiago M. Benites

    (Vicerrectorado de Investigación, Universidad Autónoma del Perú, Lima 15842, Peru)

  • Renny Nazario-Naveda

    (Vicerrectorado de Investigación, Universidad Autónoma del Perú, Lima 15842, Peru)

  • Cecilia V. Romero

    (Facultad de Medicina, Universidad Nacional de Trujillo, Trujillo 13001, Peru)

  • Moisés Gallozzo-Cardenas

    (Departamento de Ciencias, Universidad Tecnológica del Perú, Trujillo 13011, Peru)

  • Daniel Delfín-Narciso

    (Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo 13007, Peru)

  • Félix Díaz

    (Escuela Académica Profesional de Medicina Humana, Universidad Norbert Wiener, Lima 15046, Peru)

  • Emzon Murga-Torres

    (Multidisciplinary Research Laboratory, Universidad Privada Antenor Orrego (UPAO), Trujillo 13008, Peru)

Abstract

Agricultural waste negatively impacts the environment and generates economic difficulties for agro-industrial companies and farmers. As a result, it is necessary for an eco-friendly and sustainable alternative to managing this type of waste. Therefore, the research aimed to investigate lettuce waste as an alternative substrate to generate bioelectricity in single-chamber microbial fuel cells (scMFCs). It was possible to report voltage and electric current peaks of 0.959 ± 0.026 V and 5.697 ± 0.065 mA on the fourteenth day, values that were attained with an optimum pH of 7.867 ± 0.147 and with an electrical conductivity of 118.964 ± 8.888 mS/cm. Moreover, as time passed the values began to decline slowly. The calculated value of maximum power density was 378.145 ± 5.417 mW/cm 2 whose current density was 5.965 A/cm 2 , while the internal resistance reported using Ohm’s Law was 87.594 ± 6.226 Ω. Finally, it was possible to identify the Stenotrophomonas maltophilia bacterium (99.59%) on a molecular scale, as one of the microorganisms present in the anodic biofilm. The three microbial fuel cells were connected in series and demonstrated that they were capable of lighting an LED bulb, with a voltage of 2.18 V.

Suggested Citation

  • Walter Rojas-Villacorta & Segundo Rojas-Flores & Santiago M. Benites & Renny Nazario-Naveda & Cecilia V. Romero & Moisés Gallozzo-Cardenas & Daniel Delfín-Narciso & Félix Díaz & Emzon Murga-Torres, 2023. "Preliminary Study of Bioelectricity Generation Using Lettuce Waste as Substrate by Microbial Fuel Cells," Sustainability, MDPI, vol. 15(13), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10339-:d:1183541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Segundo Rojas-Flores & Magaly De La Cruz-Noriega & Luis Cabanillas-Chirinos & Renny Nazario-Naveda & Moisés Gallozzo-Cardenas & Félix Diaz & Emzon Murga-Torres, 2023. "Potential Use of Coriander Waste as Fuel for the Generation of Electric Power," Sustainability, MDPI, vol. 15(2), pages 1-10, January.
    2. Aritro Banerjee & Rajnish Kaur Calay & Fasil Ejigu Eregno, 2022. "Role and Important Properties of a Membrane with Its Recent Advancement in a Microbial Fuel Cell," Energies, MDPI, vol. 15(2), pages 1-15, January.
    3. Segundo Rojas-Flores & Luis Cabanillas-Chirinos & Renny Nazario-Naveda & Moisés Gallozzo-Cardenas & Félix Diaz & Daniel Delfin-Narciso & Walter Rojas-Villacorta, 2023. "Use of Tangerine Waste as Fuel for the Generation of Electric Current," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    4. Szymon Potrykus & Luis Fernando León-Fernández & Janusz Nieznański & Dariusz Karkosiński & Francisco Jesus Fernandez-Morales, 2021. "The Influence of External Load on the Performance of Microbial Fuel Cells," Energies, MDPI, vol. 14(3), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Cydzik-Kwiatkowska & Dawid Nosek, 2022. "Advances in Microbial Fuel Cell Technologies," Energies, MDPI, vol. 15(16), pages 1-3, August.
    2. Segundo Rojas-Flores & Magaly De La Cruz-Noriega & Luis Cabanillas-Chirinos & Santiago M. Benites & Renny Nazario-Naveda & Daniel Delfín-Narciso & Moisés Gallozzo-Cardenas & Félix Diaz & Emzon Murga-T, 2023. "Green Energy Generated in Single-Chamber Microbial Fuel Cells Using Tomato Waste," Sustainability, MDPI, vol. 15(13), pages 1-12, July.
    3. Aritro Banerjee & Rajnish Kaur Calay & Mohamad Mustafa, 2022. "Review on Material and Design of Anode for Microbial Fuel Cell," Energies, MDPI, vol. 15(6), pages 1-17, March.
    4. Adrián Hernández-Fernández & Eduardo Iniesta-López & Yolanda Garrido & Ioannis A. Ieropoulos & Francisco J. Hernández-Fernández, 2023. "Microbial Fuel Cell Using a Novel Ionic-Liquid-Type Membrane-Cathode Assembly with Heterotrophic Anodic Denitrification for Slurry Treatment," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    5. Segundo Rojas-Flores & Luis Cabanillas-Chirinos & Renny Nazario-Naveda & Moisés Gallozzo-Cardenas & Félix Diaz & Daniel Delfin-Narciso & Walter Rojas-Villacorta, 2023. "Use of Tangerine Waste as Fuel for the Generation of Electric Current," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    6. Opoku, Prince Atta & Jingyu, Huang & Yi, Li & Ewusi-Mensah, David & Miwornunyuie, Nicholas, 2023. "Scalability of the multi-anode plug flow microbial fuel cell as a sustainable prospect for large-scale design," Renewable Energy, Elsevier, vol. 207(C), pages 693-702.
    7. Rickelmi Agüero-Quiñones & Zairi Ávila-Sánchez & Segundo Rojas-Flores & Luis Cabanillas-Chirinos & Magaly De La Cruz-Noriega & Renny Nazario-Naveda & Walter Rojas-Villacorta, 2023. "Activated Carbon Electrodes for Bioenergy Production in Microbial Fuel Cells Using Synthetic Wastewater as Substrate," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    8. Jadhav, Dipak A. & Park, Sung-Gwan & Eisa, Tasnim & Mungray, Arvind K. & Madenli, Evrim Celik & Olabi, Abdul-Ghani & Abdelkareem, Mohammad Ali & Chae, Kyu-Jung, 2022. "Current outlook towards feasibility and sustainability of ceramic membranes for practical scalable applications of microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10339-:d:1183541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.