IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p624-d1019650.html
   My bibliography  Save this article

The Robust Emergency Medical Facilities Location-Allocation Models under Uncertain Environment: A Hybrid Approach

Author

Listed:
  • Fang Xu

    (Sino-German College, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Mengfan Yan

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Lun Wang

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
    School of Management, Shanghai University, Shanghai 200444, China)

  • Shaojian Qu

    (School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract

In emergency medical facilities location, the hierarchical diagnosis and treatment system plays an obvious role in the rational allocation of medical resources and improving the use efficiency of medical resources. However, few studies have investigated the operational mechanism of hierarchical medical systems in uncertain environments. To address this research gap, this paper proposes a hybrid approach for emergency medical facilities’ location-allocation. In the first stage, in order to concentrate on the utilization of medical resources, we choose alternative facility points from the whole facilities through the entropy weight method (EWM). In the second stage, uncertainty sets are used to describe the uncertain number of patients at emergency medical points more accurately. We propose a robust model to configure large base hospitals based on the robust optimization method. Furthermore, the proposed robust models are applied to the emergency management of Huanggang City under COVID-19. The results show that the optimal emergency medical facility location-allocation scheme meets the actual treatment needs. Simultaneously, the disturbance ratio and uncertainty level have a significant impact on the configuration scheme.

Suggested Citation

  • Fang Xu & Mengfan Yan & Lun Wang & Shaojian Qu, 2022. "The Robust Emergency Medical Facilities Location-Allocation Models under Uncertain Environment: A Hybrid Approach," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:624-:d:1019650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xu & Ding, Zhijing & Hang, Jianqin & He, Qizhi, 2022. "How do stock price indices absorb the COVID-19 pandemic shocks?," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    2. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    3. Yuan Gao & Zhen Zhang, 2021. "Consensus reaching with non-cooperative behavior management for personalized individual semantics-based social network group decision making," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(11), pages 2518-2535, December.
    4. Zhiqi Xu & Yukun Cheng & Shuangliang Yao & Sundarapandian Vaidyanathan, 2021. "Tripartite Evolutionary Game Model for Public Health Emergencies," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, May.
    5. Lijun Xu & Yijia Zhou & Feng Feng, 2022. "New Robust Reward-Risk Ratio Models with CVaR and Standard Deviation," Journal of Mathematics, Hindawi, vol. 2022, pages 1-12, April.
    6. Liu, Jia & Bai, Jinyu & Wu, Desheng, 2021. "Medical supplies scheduling in major public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    7. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    8. Lin Zhang & Wenjing Zhao & Beibei Sun & Ying Huang & Wolfgang Glänzel, 2020. "How scientific research reacts to international public health emergencies: a global analysis of response patterns," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 747-773, July.
    9. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    10. Gernot Schullerus & Peerasan Supavatanakul & Volker Krebs & Jan Lunze, 2006. "Modelling and hierarchical diagnosis of timed discrete-event systems," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 12(6), pages 519-542, December.
    11. Xuchen Deng & Nan-Jing Huang, 2021. "Location-Routing Problem of Emergency Facilities under Uncertain Demand by Branch-Price and Cut," Journal of Mathematics, Hindawi, vol. 2021, pages 1-12, December.
    12. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    13. Hossein Savoji & Seyed Meysam Mousavi & Jurgita Antucheviciene & Miroslavas Pavlovskis, 2022. "A Robust Possibilistic Bi-Objective Mixed Integer Model for Green Biofuel Supply Chain Design under Uncertain Conditions," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    14. Dragan Pamučar & Ljubomir Gigović & Zoran Bajić & Miljojko Janošević, 2017. "Location Selection for Wind Farms Using GIS Multi-Criteria Hybrid Model: An Approach Based on Fuzzy and Rough Numbers," Sustainability, MDPI, vol. 9(8), pages 1-23, July.
    15. Shaojian Qu & Lei Xu & Sachin Kumar Mangla & Felix T. S. Chan & Jianli Zhu & Sobhan Arisian, 2022. "Matchmaking in reward-based crowdfunding platforms: a hybrid machine learning approach," International Journal of Production Research, Taylor & Francis Journals, vol. 60(24), pages 7551-7571, December.
    16. Essam Kaoud & Mohammad A. M. Abdel-Aal & Tatsuhiko Sakaguchi & Naoki Uchiyama, 2022. "Robust Optimization for a Bi-Objective Green Closed-Loop Supply Chain with Heterogeneous Transportation System and Presorting Consideration," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    17. Ming Liu & Xifen Xu & Jie Cao & Ding Zhang, 2020. "Integrated planning for public health emergencies: A modified model for controlling H1N1 pandemic," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 748-761, May.
    18. Chaonan Li & Tianyi Guo & Yan Chen, 2022. "Robust Emission Reduction Strategies under Cap-and-Trade and Demand Uncertainty," Sustainability, MDPI, vol. 14(20), pages 1-27, October.
    19. Dongqing Luan & Chuming Wang & Zhong Wu & Zhijie Xia & Alfred Peris, 2021. "Two-Stage Robust Optimization Model for Uncertainty Investment Portfolio Problems," Journal of Mathematics, Hindawi, vol. 2021, pages 1-19, December.
    20. Eda Yücel & F. Sibel Salman & Burçin Bozkaya & Cemre Gökalp, 2020. "A data-driven optimization framework for routing mobile medical facilities," Annals of Operations Research, Springer, vol. 291(1), pages 1077-1102, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    3. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    4. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    5. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    6. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    7. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    8. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.
    9. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    10. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    11. F. Davarian & J. Behnamian, 2022. "Robust finite-horizon scheduling/rescheduling of operating rooms with elective and emergency surgeries under resource constraints," Journal of Scheduling, Springer, vol. 25(6), pages 625-641, December.
    12. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    13. Alberto Caprara & Laura Galli & Sebastian Stiller & Paolo Toth, 2014. "Delay-Robust Event Scheduling," Operations Research, INFORMS, vol. 62(2), pages 274-283, April.
    14. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    15. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2016. "The Impact of Modeling on Robust Inventory Management Under Demand Uncertainty," Management Science, INFORMS, vol. 62(4), pages 1188-1201, April.
    16. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    17. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    18. Donya Rahmani & Arash Zandi & Sara Behdad & Arezou Entezaminia, 2021. "A light robust model for aggregate production planning with consideration of environmental impacts of machines," Operational Research, Springer, vol. 21(1), pages 273-297, March.
    19. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    20. Roos, Ernst & den Hertog, Dick, 2019. "Reducing conservatism in robust optimization," Other publications TiSEM ad0238cd-de7a-4366-b487-b, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:624-:d:1019650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.