IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5579-d809486.html
   My bibliography  Save this article

Electro-Conversion of Carbon Dioxide to Valuable Chemicals in a Membrane Electrode Assembly

Author

Listed:
  • Zhenyu Jin

    (School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China)

  • Yingqing Guo

    (School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China)

  • Chaozhi Qiu

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 812-8582, Japan)

Abstract

Electro-conversion of carbon dioxide (CO 2 ) into valuable chemicals is an efficient method to deal with excessive CO 2 in the atmosphere. However, undesirable CO 2 reaction kinetics in the bulk solution strongly limit current density, and thus it is incompetent in market promotion. Flow cell technology provides an insight into uplifting current density. As an efficient flow cell configuration, membrane electrode assembly (MEA) has been proposed and proven as a viable technology for scalable CO 2 electro-conversion, promoting current density to several hundred mA/cm 2 . In this review, we systematically reviewed recent perspectives and methods to put forward the utilization of state-of-the-art MEA to convert CO 2 into valuable chemicals. Configuration design, catalysts nature, and flow media were discussed. At the end of this review, we also presented the current challenges and the potential directions for potent MEA design. We hope this review could offer some clear, timely, and valuable insights on the development of MEA for using wastewater-produced CO 2 .

Suggested Citation

  • Zhenyu Jin & Yingqing Guo & Chaozhi Qiu, 2022. "Electro-Conversion of Carbon Dioxide to Valuable Chemicals in a Membrane Electrode Assembly," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5579-:d:809486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Fan & Chuan Xia & Peng Zhu & Yingying Lu & Haotian Wang, 2020. "Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Aiguo Dai & Dehai Luo & Mirong Song & Jiping Liu, 2019. "Arctic amplification is caused by sea-ice loss under increasing CO2," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Chuan Xia & Peng Zhu & Qiu Jiang & Ying Pan & Wentao Liang & Eli Stavitski & Husam N. Alshareef & Haotian Wang, 2019. "Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices," Nature Energy, Nature, vol. 4(9), pages 776-785, September.
    4. I. A. Grant Wilson & Iain Staffell, 2018. "Rapid fuel switching from coal to natural gas through effective carbon pricing," Nature Energy, Nature, vol. 3(5), pages 365-372, May.
    5. Fengwang Li & Arnaud Thevenon & Alonso Rosas-Hernández & Ziyun Wang & Yilin Li & Christine M. Gabardo & Adnan Ozden & Cao Thang Dinh & Jun Li & Yuhang Wang & Jonathan P. Edwards & Yi Xu & Christopher , 2020. "Molecular tuning of CO2-to-ethylene conversion," Nature, Nature, vol. 577(7791), pages 509-513, January.
    6. Bhosale, Amit C. & Ghosh, Prakash C. & Assaud, Loïc, 2020. "Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohan Yu & Yuting Xu & Le Li & Mingzhe Zhang & Wenhao Qin & Fanglin Che & Miao Zhong, 2024. "Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Leiming Hu & Jacob A. Wrubel & Carlos M. Baez-Cotto & Fry Intia & Jae Hyung Park & Arthur Jeremy Kropf & Nancy Kariuki & Zhe Huang & Ahmed Farghaly & Lynda Amichi & Prantik Saha & Ling Tao & David A. , 2023. "A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Juncai Dong & Yangyang Liu & Jiajing Pei & Haijing Li & Shufang Ji & Lei Shi & Yaning Zhang & Can Li & Cheng Tang & Jiangwen Liao & Shiqing Xu & Huabin Zhang & Qi Li & Shenlong Zhao, 2023. "Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jiexin Zhu & Jiantao Li & Ruihu Lu & Ruohan Yu & Shiyong Zhao & Chengbo Li & Lei Lv & Lixue Xia & Xingbao Chen & Wenwei Cai & Jiashen Meng & Wei Zhang & Xuelei Pan & Xufeng Hong & Yuhang Dai & Yu Mao , 2023. "Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Rohan Best & Paul J. Burke, 2020. "Energy mix persistence and the effect of carbon pricing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 555-574, July.
    7. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    8. Rentier, Gerrit & Lelieveldt, Herman & Kramer, Gert Jan, 2019. "Varieties of coal-fired power phase-out across Europe," Energy Policy, Elsevier, vol. 132(C), pages 620-632.
    9. Karoliina Isoaho & Jochen Markard, 2020. "The Politics of Technology Decline: Discursive Struggles over Coal Phase‐Out in the UK," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 342-368, May.
    10. Huali Wu & Ji Li & Kun Qi & Yang Zhang & Eddy Petit & Wensen Wang & Valérie Flaud & Nicolas Onofrio & Bertrand Rebiere & Lingqi Huang & Chrystelle Salameh & Luc Lajaunie & Philippe Miele & Damien Voir, 2021. "Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
    12. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    14. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    15. Subin Jung & Hyojin Jung & Yuchan Ahn, 2022. "Optimal Economic–Environmental Design of Heat Exchanger Network in Naphtha Cracking Center Considering Fuel Type and CO 2 Emissions," Energies, MDPI, vol. 15(24), pages 1-14, December.
    16. Zheng, Xinzhu & Wang, Ranran & Liddle, Brantley & Wen, Yuli & Lin, Lu & Wang, Lining, 2022. "Crude oil footprint in the rapidly changing world and implications from their income and price elasticities," Energy Policy, Elsevier, vol. 169(C).
    17. Hao, Xinyu & Sun, Wen & Zhang, Xiaoling, 2023. "How does a scarcer allowance remake the carbon market? An evolutionary game analysis from the perspective of stakeholders," Energy, Elsevier, vol. 280(C).
    18. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    19. Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
    20. Milstein, Irena & Tishler, Asher & Woo, Chi-Keung, 2022. "Wholesale electricity market economics of solar generation in Israel," Utilities Policy, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5579-:d:809486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.