IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5074-d800258.html
   My bibliography  Save this article

A Unified Inner Current Control Strategy Based on the 2-DOF Theory for a Multifunctional Cascade Converter in an Integrated Microgrid System

Author

Listed:
  • Jiexing Wan

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Wei Hua

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Baoan Wang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

Wider applications of integrated microgrids have been significantly restricted by converters with the sole function of power regulation. In microgrids with distributed generation and energy storage equipment, it is crucial for converters to be capable of reactive power compensation, harmonic suppression, voltage support, and other functions simultaneously. To achieve this, it is essential to modify the discrepancy between different control modes, both in control architectures and input signals. However, previous researches have focused on the stability and robustness of the system’s operation, rather than the instantaneous tracking performance of instructions during the mode switching. Instead, a unified control strategy based on the two-degree-of-freedom theory is conceived in this paper, to impose no reconfiguration of the inner current loop, so that the inherent stability can be guaranteed. In the proposed strategy, mode transition is replaced by the readjustment of referring instructions, and the complex tuning of filter parameters is abandoned. Thus, a desirable performance in a wide range of operating conditions for the microgrid system is provided and the effects of the disturbances associated with the mode transitions are eliminated. The simulations studied in MATLAB and experimental evaluations of the prototype both corroborate the simplicity and effectiveness.

Suggested Citation

  • Jiexing Wan & Wei Hua & Baoan Wang, 2022. "A Unified Inner Current Control Strategy Based on the 2-DOF Theory for a Multifunctional Cascade Converter in an Integrated Microgrid System," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5074-:d:800258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karim M. El-Sharawy & Hatem Y. Diab & Mahmoud O. Abdelsalam & Mostafa I. Marei, 2021. "A Unified Control Strategy of Distributed Generation for Grid-Connected and Islanded Operation Conditions Using an Artificial Neural Network," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    2. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    3. Jiexing Wan & Wei Hua & Baoan Wang, 2021. "Compulsory Islanding Transition Strategy Based on Fuzzy Logic Control for a Renewable Microgrid System," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    2. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    3. Faisal Mumtaz & Kashif Imran & Abdullah Abusorrah & Syed Basit Ali Bukhari, 2022. "Harmonic Content-Based Protection Method for Microgrids via 1-Dimensional Recursive Median Filtering Algorithm," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    4. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    6. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    7. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    8. Gerardo Humberto Valencia-Rivera & Ivan Amaya & Jorge M. Cruz-Duarte & José Carlos Ortíz-Bayliss & Juan Gabriel Avina-Cervantes, 2021. "Hybrid Controller Based on LQR Applied to Interleaved Boost Converter and Microgrids under Power Quality Events," Energies, MDPI, vol. 14(21), pages 1-31, October.
    9. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    10. Oh, Jinwoo & Jeong, Hoyoung & Lee, Hoseong, 2021. "Experimental and numerical analysis on low-temperature off-design organic Rankine cycle in perspective of mass conservation," Energy, Elsevier, vol. 234(C).
    11. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    12. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    13. Li, Shenglin & Zhu, Jizhong & Dong, Hanjiang & Zhu, Haohao & Fan, Junwei, 2022. "A novel rolling optimization strategy considering grid-connected power fluctuations smoothing for renewable energy microgrids," Applied Energy, Elsevier, vol. 309(C).
    14. Yijin Li & Jianhua Lin & Geng Niu & Ming Wu & Xuteng Wei, 2021. "A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids," Energies, MDPI, vol. 14(16), pages 1-16, August.
    15. Stephanus Erasmus & Nicolaas Esterhuysen & Jacques Maritz, 2023. "Campus Microgrids within the South African Context: A Case Study to Illustrate Unique Design, Control Challenges, and Hybrid Dispatch Strategies," Energies, MDPI, vol. 16(3), pages 1-18, February.
    16. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Aditya Sundararajan & Mohammed Olama & Yang Chen, 2023. "Distributed Energy Management for Networked Microgrids with Hardware-in-the-Loop Validation," Energies, MDPI, vol. 16(7), pages 1-27, March.
    17. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    18. Hani Muhsen & Asma Alkhraibat & Ala’aldeen Al-Halhouli, 2023. "Real-Time Simulation and Energy Management Attainment of Microgrids," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    19. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Hegazy Rezk & A. G. Olabi & Enas Taha Sayed & Tabbi Wilberforce, 2023. "Role of Metaheuristics in Optimizing Microgrids Operating and Management Issues: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5074-:d:800258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.