IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4258-d786447.html
   My bibliography  Save this article

Experimental Survey of the Sound Absorption Performance of Natural Fibres in Comparison with Conventional Insulating Materials

Author

Listed:
  • Veronika Gumanová

    (Department of Environmental Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

  • Lýdia Sobotová

    (Department of Environmental Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

  • Tibor Dzuro

    (Department of Environmental Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

  • Miroslav Badida

    (Department of Environmental Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

  • Marek Moravec

    (Department of Environmental Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

Abstract

The purpose of this research is to investigate the acoustic properties of natural fibres and compare them with the values achieved by common insulation materials used in the construction of buildings. Three materials based on biomass were used for testing, namely cork, hemp and fibreboard. From the group of conventional materials, mineral wool, propylat and polyurethane foam were selected. For the purpose of determining the values of the sound absorption coefficient (α), the absorber specimens were tested using the impedance tube and two microphones method, according to standard ISO 10534-2. The measurement was performed for thicknesses of 20, 40, 60, 80 and 100 mm. The highest sound absorption of all materials was measured with a hemp sample at a frequency of 2000 Hz (α = 0.99) and a thickness of 20 mm. The lowest performance was achieved by cork at the same thickness and frequency of 100 Hz (α = 0.02). Among biomass materials, hemp dominated in the entire frequency range and at all thicknesses. The lowest values were for cork, from 160 to 500 Hz with a tendency to exceed the values of the fibreboard sample. Among conventional materials, mineral wool achieved the best results, while the lowest values were recorded for propylat with the occasional exception of the highest frequencies from 1600 to 2500 Hz.

Suggested Citation

  • Veronika Gumanová & Lýdia Sobotová & Tibor Dzuro & Miroslav Badida & Marek Moravec, 2022. "Experimental Survey of the Sound Absorption Performance of Natural Fibres in Comparison with Conventional Insulating Materials," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4258-:d:786447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Yang & Lizhu Hu & Xiaoman Xiong & Michal Petrů & Muhammad Tayyab Noman & Rajesh Mishra & Jiří Militký, 2020. "Sound Absorption Properties of Natural Fibers: A Review," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    2. Marek Moravec & Miroslav Badida & Nikoleta Mikušová & Lýdia Sobotová & Jozef Švajlenka & Tibor Dzuro, 2021. "Proposed Options for Noise Reduction from a Wastewater Treatment Plant: Case Study," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    3. Moretti, Elisa & Belloni, Elisa & Agosti, Fabrizio, 2016. "Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization," Applied Energy, Elsevier, vol. 169(C), pages 421-432.
    4. Jorge P. Arenas & Kimihiro Sakagami, 2020. "Sustainable Acoustic Materials," Sustainability, MDPI, vol. 12(16), pages 1-5, August.
    5. Ricciardi, P. & Belloni, E. & Cotana, F., 2014. "Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment," Applied Energy, Elsevier, vol. 134(C), pages 150-162.
    6. Jozef Švajlenka & Mária Kozlovská & Miroslav Badida & Marek Moravec & Tibor Dzuro & František Vranay, 2020. "Analysis of the Characteristics of External Walls of Wooden Prefab Cross Laminated Timber," Energies, MDPI, vol. 13(22), pages 1-14, November.
    7. Juan Miguel Barrigón Morillas & David Montes González & Rosendo Vílchez-Gómez & Valentín Gómez Escobar & Rubén Maderuelo-Sanz & Guillermo Rey Gozalo & Pedro Atanasio Moraga, 2021. "Virgin Natural Cork Characterization as a Sustainable Material for Use in Acoustic Solutions," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miroslav Badida & Marek Moravec & Miriama Pinosova & Miriam Andrejiova & Kristián Pástor & Alžbeta Nováková & Tibor Dzuro, 2022. "Analysis and Research on the Use of Bulk Recycled Materials for Sound Insulation Applications," Sustainability, MDPI, vol. 14(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ela Fasllija & Semiha Yilmazer, 2023. "Investigating the Potential of Transparent Parallel-Arranged Micro-Perforated Panels (MPPs) as Sound Absorbers in Classrooms," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    2. Miroslav Badida & Marek Moravec & Miriama Pinosova & Miriam Andrejiova & Kristián Pástor & Alžbeta Nováková & Tibor Dzuro, 2022. "Analysis and Research on the Use of Bulk Recycled Materials for Sound Insulation Applications," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    3. Miriam Andrejiova & Miriama Pinosova & Miroslav Badida, 2021. "Occupational Disease as the Bane of Workers’ Lives: A Study of Its Incidence in Slovakia. Part 2," IJERPH, MDPI, vol. 18(24), pages 1-21, December.
    4. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    5. Manuela Neri & Mariagrazia Pilotelli & Marco Traversi & Elisa Levi & Edoardo Alessio Piana & Mariasole Bannó & Eva Cuerva & Pablo Pujadas & Alfredo Guardo, 2021. "Conversion of End-of-Life Household Materials into Building Insulating Low-Cost Solutions for the Development of Vulnerable Contexts: Review and Outlook towards a Circular and Sustainable Economy," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    6. Moretti, Elisa & Belloni, Elisa & Agosti, Fabrizio, 2016. "Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization," Applied Energy, Elsevier, vol. 169(C), pages 421-432.
    7. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Dariusz Bajno & Agnieszka Grzybowska & Łukasz Bednarz, 2021. "Old and Modern Wooden Buildings in the Context of Sustainable Development," Energies, MDPI, vol. 14(18), pages 1-31, September.
    9. Abdalhadi Alhawari & Phalguni Mukhopadhyaya, 2022. "Construction and Calibration of a Unique Hot Box Apparatus," Energies, MDPI, vol. 15(13), pages 1-20, June.
    10. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Liu, LiFang & Li, HongQiang & Lazzaretto, Andrea & Manente, Giovanni & Tong, ChunYi & Liu, QiBin & Li, NianPing, 2017. "The development history and prospects of biomass-based insulation materials for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 912-932.
    12. Grazia Dicuonzo & Graziana Galeone & Simona Ranaldo & Mario Turco, 2020. "The Key Drivers of Born-Sustainable Businesses: Evidence from the Italian Fashion Industry," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    13. Rosa Agliata & Alfonso Marino & Luigi Mollo & Paolo Pariso, 2020. "Historic Building Energy Audit and Retrofit Simulation with Hemp-Lime Plaster—A Case Study," Sustainability, MDPI, vol. 12(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4258-:d:786447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.