IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5975-d639576.html
   My bibliography  Save this article

Old and Modern Wooden Buildings in the Context of Sustainable Development

Author

Listed:
  • Dariusz Bajno

    (Department of Building Structures, Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland)

  • Agnieszka Grzybowska

    (Department of Building Structures, Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland)

  • Łukasz Bednarz

    (Department of Building Structures, Faculty of Civil Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

Abstract

Construction is a powerful industry that is not indifferent to the environment. Neither the maintenance of buildings in a proper technical condition nor their eventual demolition is indifferent to the environment. The main threats to the environment are still the inefficient use of construction materials and energy needed for their production and installation, as well as the emission of harmful substances to the environment at the stage of operation of buildings and their demolition. This article discusses the importance of wood as a renewable material in terms of its physical and mechanical properties. The restoration of forest areas is of great importance to the global ecosystem and the sustainable development system, reducing the threat of global warming and the greenhouse effect by reducing CO 2 levels. In addition, demolition wood can be reused in construction, can be safely recycled as it quickly decomposes, or can be used as a source of renewable energy. The preservation of existing timber-framed buildings in good condition contributes to a lower consumption of this raw material for repair, which already significantly reduces the energy required for their manufacture, transport, and assembly. This also reduces the amount of waste that would have to be disposed of in various ways. Both at the stage of design, execution, and then exploitation, one forgets about the physical processes taking place inside the partitions and about the external climatic influences of the environment (precipitation, water vapor, and temperature) on which the type, intensity, and extent of chemical and biological corrosion depend to a very high degree. This paper presents examples of the influence of such impacts on the operational safety of three selected objects: a feed storehouse and an officer casino building from the second half of the nineteenth century and an 18th century rural homestead building. The research carried out on wooden structures of the above-mentioned objects “in situ” was verified by means of simulation models, which presented their initial and current technical conditions in relation to the type and amount of impact they should safely absorb. Moreover, within the framework of this paper, artificial intelligence methods have been implemented to predict the biological corrosion of the structures studied. The aim of the paper was to draw attention to the timber already built into buildings, which may constitute waste even after several years of operation, requiring disposal and at the same time the production of a substitute. The purpose of the research carried out by the authors of the article was to examine the older and newer buildings in use, the structures of which, in whole or in part, were made of wood. On a global scale, there will be considerable demand for the energy required to thermally dispose of this waste or to deposit it in landfills with very limited capacity until its complete biological decomposition. These energy demands and greenhouse gas emissions can be prevented by effective diagnostics of such structures and the predictability of their behaviour over time, with respect to the conditions under which they are operated. The authors of the article, during each assessment of the technical condition of a building containing wooden elements, analysed the condition of their protection each time and predicted the period of their safe life without the need for additional reinforcements or replacement by others. As the later reality shows, it is a very effective method of saving money and energy.

Suggested Citation

  • Dariusz Bajno & Agnieszka Grzybowska & Łukasz Bednarz, 2021. "Old and Modern Wooden Buildings in the Context of Sustainable Development," Energies, MDPI, vol. 14(18), pages 1-31, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5975-:d:639576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arkadiusz Dobrzycki & Dariusz Kurz & Stanisław Mikulski & Grzegorz Wodnicki, 2020. "Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland," Energies, MDPI, vol. 13(10), pages 1-19, May.
    2. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    3. Endrik Arumägi & Targo Kalamees, 2020. "Cost and Energy Reduction of a New nZEB Wooden Building," Energies, MDPI, vol. 13(14), pages 1-16, July.
    4. Joanna Hałacz & Aldona Skotnicka-Siepsiak & Maciej Neugebauer, 2020. "Assessment of Reducing Pollutant Emissions in Selected Heating and Ventilation Systems in Single-Family Houses," Energies, MDPI, vol. 13(5), pages 1-19, March.
    5. Dariusz Bajno & Łukasz Bednarz & Agnieszka Grzybowska, 2021. "The Role and Place of Traditional Chimney System Solutions in Environmental Progress and in Reducing Energy Consumption," Energies, MDPI, vol. 14(16), pages 1-32, August.
    6. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2020. "Building Thermo-Modernisation Solution Based on the Multi-Objective Optimisation Method," Energies, MDPI, vol. 13(6), pages 1-19, March.
    7. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    8. Miłosz Raczyński & Radosław Rutkowski, 2020. "How Pro-Environmental Legal Regulations Affect the Design Process and Management of Multi-Family Residential Buildings in Poland," Energies, MDPI, vol. 13(20), pages 1-23, October.
    9. Robert Dylewski, 2019. "Optimal Thermal Insulation Thicknesses of External Walls Based on Economic and Ecological Heating Cost," Energies, MDPI, vol. 12(18), pages 1-14, September.
    10. Michał Kaczmarczyk & Anna Sowiżdżał & Barbara Tomaszewska, 2020. "Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland," Energies, MDPI, vol. 13(2), pages 1-16, January.
    11. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    12. Małgorzata Fedorczak-Cisak & Elżbieta Radziszewska-Zielina & Bożena Orlik-Kożdoń & Tomasz Steidl & Tadeusz Tatara, 2020. "Analysis of the Thermal Retrofitting Potential of the External Walls of Podhale’s Historical Timber Buildings in the Aspect of the Non-Deterioration of Their Technical Condition," Energies, MDPI, vol. 13(18), pages 1-35, September.
    13. Robert Dylewski & Janusz Adamczyk, 2020. "Impact of the Degree Days of the Heating Period on Economically and Ecologically Optimal Thermal Insulation Thickness," Energies, MDPI, vol. 14(1), pages 1-14, December.
    14. Jozef Švajlenka & Mária Kozlovská & Miroslav Badida & Marek Moravec & Tibor Dzuro & František Vranay, 2020. "Analysis of the Characteristics of External Walls of Wooden Prefab Cross Laminated Timber," Energies, MDPI, vol. 13(22), pages 1-14, November.
    15. Anna Życzyńska & Zbigniew Suchorab & Jan Kočí & Robert Černý, 2020. "Energy Effects of Retrofitting the Educational Facilities Located in South-Eastern Poland," Energies, MDPI, vol. 13(10), pages 1-16, May.
    16. Paola Marrone & Paola Gori & Francesco Asdrubali & Luca Evangelisti & Laura Calcagnini & Gianluca Grazieschi, 2018. "Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting," Energies, MDPI, vol. 11(3), pages 1-20, March.
    17. Walery Jezierski & Beata Sadowska & Krzysztof Pawłowski, 2020. "Impact of Changes in the Required Thermal Insulation of Building Envelope on Energy Demand, Heating Costs, Emissions, and Temperature in Buildings," Energies, MDPI, vol. 14(1), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    2. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    3. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2023. "Audit-Based Energy Performance Analysis of Multifamily Buildings in South-East Poland," Energies, MDPI, vol. 16(12), pages 1-21, June.
    4. Piotr Michalak, 2022. "Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building," Energies, MDPI, vol. 15(5), pages 1-23, March.
    5. Anna Życzyńska & Zbigniew Suchorab & Dariusz Majerek, 2020. "Influence of Thermal Retrofitting on Annual Energy Demand for Heating in Multi-Family Buildings," Energies, MDPI, vol. 13(18), pages 1-19, September.
    6. Agata Ołtarzewska & Dorota Anna Krawczyk, 2022. "Analysis of the Influence of Selected Factors on Heating Costs and Pollutant Emissions in a Cold Climate Based on the Example of a Service Building Located in Bialystok," Energies, MDPI, vol. 15(23), pages 1-13, December.
    7. Katarzyna Ratajczak & Edward Szczechowiak, 2020. "The Use of a Heat Pump in a Ventilation Unit as an Economical and Ecological Source of Heat for the Ventilation System of an Indoor Swimming Pool Facility," Energies, MDPI, vol. 13(24), pages 1-22, December.
    8. Robert Dylewski & Janusz Adamczyk, 2021. "Optimum Thickness of Thermal Insulation with Both Economic and Ecological Costs of Heating and Cooling," Energies, MDPI, vol. 14(13), pages 1-17, June.
    9. Piotr Michalak, 2021. "Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building," Energies, MDPI, vol. 14(18), pages 1-22, September.
    10. Miłosz Raczyński & Radosław Rutkowski, 2020. "How Pro-Environmental Legal Regulations Affect the Design Process and Management of Multi-Family Residential Buildings in Poland," Energies, MDPI, vol. 13(20), pages 1-23, October.
    11. Krzysztof Księżopolski & Mirosław Drygas & Kamila Pronińska & Iwona Nurzyńska, 2020. "The Economic Effects of New Patterns of Energy Efficiency and Heat Sources in Rural Single-Family Houses in Poland," Energies, MDPI, vol. 13(23), pages 1-19, December.
    12. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    13. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    14. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    15. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    16. Abdrahman Alsabry & Krzysztof Szymański & Bartosz Michalak, 2023. "Energy, Economic and Environmental Analysis of Alternative, High-Efficiency Sources of Heat and Energy for Multi-Family Residential Buildings in Order to Increase Energy Efficiency in Poland," Energies, MDPI, vol. 16(6), pages 1-20, March.
    17. Krzysztof Nowak & Sławomir Rabczak, 2020. "Technical and Economic Analysis of the External Surface Heating System on the Example of a Car Park," Energies, MDPI, vol. 13(24), pages 1-15, December.
    18. Artur Jaworski & Vasyl Mateichyk & Hubert Kuszewski & Maksymilian Mądziel & Paweł Woś & Bożena Babiarz & Mirosław Śmieszek & Sławomir Porada, 2023. "Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NO X Emissions Reduction in Sustainable Public Transport," Energies, MDPI, vol. 16(19), pages 1-18, October.
    19. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    20. Karim Mohamed Ragab & Mehmet Fatih Orhan & Kenan Saka & Yousef Zurigat, 2022. "A Study and Assessment of the Status of Energy Efficiency and Conservation at School Buildings," Sustainability, MDPI, vol. 14(17), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5975-:d:639576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.