IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2827-d761363.html
   My bibliography  Save this article

A Novel Fuzzy-Based VIKOR–CRITIC Soft Computing Method for Evaluation of Sustainable Supply Chain Risk Management

Author

Listed:
  • Fahim ul Amin

    (School of Economics and Management, Chang’an University, Xi’an 710064, China)

  • Qian-Li Dong

    (School of Economics and Management, Chang’an University, Xi’an 710064, China)

  • Katarzyna Grzybowska

    (Faculty of Engineering Management, Poznan University of Technology, Jacka Rychlewskiego 2, 60-965 Poznan, Poland)

  • Zahid Ahmed

    (Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China)

  • Bo-Rui Yan

    (School of Economics and Management, Chang’an University, Xi’an 710064, China)

Abstract

This article aims to evaluate sustainable supply chain risks using a novel fuzzy VIKOR–CRITIC technique. The research contributions of this study are twofold. First and foremost, this is the first attempt to integrate the fuzzy VIKOR approach with the CRITIC method in order to eradicate the inadequacies of the VIKOR method. Second, this is the first study to look at the sustainable supply chain risk management in Pakistan’s logistics industry. Four logistics companies were chosen for the study, and thirty criteria were established and divided into four categories using acquired data and literature studies. According to the findings, organizational risks are the most important to consider, whereas environmental hazards have the least influence. Supply delays, freight rate/oil price fluctuations, bankruptcy, and natural catastrophe are the four most important criteria in these categories. Limited suppliers, cargo tracking, IT system failure, and international politics are the four least significant criteria in the four risk categories. The findings are useful for the logistics industry operating in CPEC for risk mitigation and sustainable operation. The research may be used as a guideline for risk identification and management by practitioners and decision-makers in Pakistani logistics organizations.

Suggested Citation

  • Fahim ul Amin & Qian-Li Dong & Katarzyna Grzybowska & Zahid Ahmed & Bo-Rui Yan, 2022. "A Novel Fuzzy-Based VIKOR–CRITIC Soft Computing Method for Evaluation of Sustainable Supply Chain Risk Management," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2827-:d:761363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonia Irshad Mari & Young Hae Lee & Muhammad Saad Memon, 2014. "Sustainable and Resilient Supply Chain Network Design under Disruption Risks," Sustainability, MDPI, vol. 6(10), pages 1-21, September.
    2. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    3. Venkatesh Mani & Catarina Delgado & Benjamin T. Hazen & Purvishkumar Patel, 2017. "Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain," Sustainability, MDPI, vol. 9(4), pages 1-21, April.
    4. Katarzyna Grzybowska, 2021. "Identification and Classification of Global Theoretical Trends and Supply Chain Development Directions," Energies, MDPI, vol. 14(15), pages 1-19, July.
    5. Kauppi, Katri & Longoni, Annachiara & Caniato, Federico & Kuula, Markku, 2016. "Managing country disruption risks and improving operational performance: risk management along integrated supply chains," International Journal of Production Economics, Elsevier, vol. 182(C), pages 484-495.
    6. Fatima Ezzahra Essaber & Rachid Benmoussa & Roland De Guio & Sébastien Dubois, 2021. "A Hybrid Supply Chain Risk Management Approach for Lean Green Performance Based on AHP, RCA and TRIZ: A Case Study," Sustainability, MDPI, vol. 13(15), pages 1-41, July.
    7. Mari, Sonia Irshad & Lee, Young Hae & Memon, Muhammad Saad & Cho, Su Yeon, 2014. "A Three-level Sustainable and Resilient Supply Chain Network Design under Disruption," MPRA Paper 58228, University Library of Munich, Germany.
    8. Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
    9. Jin Sung Rha, 2020. "Trends of Research on Supply Chain Resilience: A Systematic Review Using Network Analysis," Sustainability, MDPI, vol. 12(11), pages 1-27, May.
    10. Mangla, Sachin Kumar & Kumar, Pradeep & Barua, Mukesh Kumar, 2015. "Risk analysis in green supply chain using fuzzy AHP approach: A case study," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 375-390.
    11. Manel Elmsalmi & Wafik Hachicha & Awad M. Aljuaid, 2021. "Prioritization of the Best Sustainable Supply Chain Risk Management Practices Using a Structural Analysis Based-Approach," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    12. Pfohl, Hans-Christian & Köhler, Holger & Thomas, David, 2010. "State of the art in supply chain risk management research. Empirical and conceptual findings and a roadmap for the implementation in practice," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 41981, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Mikihisa Nakano, 2020. "Supply Chain Management," Springer Books, Springer, number 978-981-13-8479-0, December.
    14. Gabriela Costa Dias & Ualison Rébula de Oliveira & Gilson Brito Alves Lima & Vicente Aprigliano Fernandes, 2021. "Risk Management in the Import/Export Process of an Automobile Company: A Contribution for Supply Chain Sustainability," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    15. Mahdi Nasrollahi & Mohammad Reza Fathi & Naghmeh Sheikh Hassani, 2020. "Eco-innovation and cleaner production as sustainable competitive advantage antecedents: the mediating role of green performance," International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, vol. 22(3), pages 388-407.
    16. Madhukar Chhimwal & Saurabh Agrawal & Girish Kumar, 2021. "Measuring Circular Supply Chain Risk: A Bayesian Network Methodology," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    17. Zhi-Xin Su, 2011. "A Hybrid Fuzzy Approach To Fuzzy Multi-Attribute Group Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 695-711.
    18. Qing Zhang & Weiguo Fan & Jianchang Lu & Siqian Wu & Xuechao Wang, 2021. "Research on Dynamic Analysis and Mitigation Strategies of Supply Chains under Different Disruption Risks," Sustainability, MDPI, vol. 13(5), pages 1-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aquib Irteza Reshad & Tasnia Biswas & Renu Agarwal & Sanjoy Kumar Paul & Abdullahil Azeem, 2023. "Evaluating barriers and strategies to sustainable supply chain risk management in the context of an emerging economy," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4315-4334, November.
    2. Rimalini Gadekar & Bijan Sarkar & Ashish Gadekar, 2022. "Key performance indicator based dynamic decision-making framework for sustainable Industry 4.0 implementation risks evaluation: reference to the Indian manufacturing industries," Annals of Operations Research, Springer, vol. 318(1), pages 189-249, November.
    3. Fahim ul Amin & Qingkai Ji & María del Carmen Valls Martínez & Qian-Li Dong & Shamsa Kanwal & Iram Zulfiqar, 2023. "The Moderating Effect of Customer Relationship on Supply Chain Risk Management and Organization Performance in Logistics Sector of Pakistan," SAGE Open, , vol. 13(1), pages 21582440231, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Negri & Enrico Cagno & Claudia Colicchia & Joseph Sarkis, 2021. "Integrating sustainability and resilience in the supply chain: A systematic literature review and a research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 2858-2886, November.
    2. Maria Ghufran & Khurram Iqbal Ahmad Khan & Fahim Ullah & Wesam Salah Alaloul & Muhammad Ali Musarat, 2022. "Key Enablers of Resilient and Sustainable Construction Supply Chains: A Systems Thinking Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    3. Jiguang Wang & Bing Ran, 2018. "Sustainable Collaborative Governance in Supply Chain," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    4. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. Fu Jia & Yan Jiang, 2018. "Sustainable Global Sourcing: A Systematic Literature Review and Bibliometric Analysis," Sustainability, MDPI, vol. 10(3), pages 1-26, February.
    6. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    7. Rika Ampuh Hadiguna, 2012. "Decision support framework for risk assessment of sustainable supply chain," International Journal of Logistics Economics and Globalisation, Inderscience Enterprises Ltd, vol. 4(1/2), pages 35-54.
    8. Ruiying Li & Qiang Dong & Chong Jin & Rui Kang, 2017. "A New Resilience Measure for Supply Chain Networks," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    9. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    10. Hatem Elleuch & Wafik Hachicha & Habib Chabchoub, 2014. "A combined approach for supply chain risk management: description and application to a real hospital pharmaceutical case study," Journal of Risk Research, Taylor & Francis Journals, vol. 17(5), pages 641-663, May.
    11. Luis Francisco López-Castro & Elyn L. Solano-Charris, 2021. "Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    12. Xin Zhang & Gang Zhao & Yingxiu Qi & Botang Li, 2019. "A Robust Fuzzy Optimization Model for Closed-Loop Supply Chain Networks Considering Sustainability," Sustainability, MDPI, vol. 11(20), pages 1-24, October.
    13. El-Awady Attia & Ali Alarjani & Md. Sharif Uddin & Ahmed Farouk Kineber, 2023. "Determining the Stationary Enablers of Resilient and Sustainable Supply Chains," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    14. Hao Yu & Wei Deng Solvang, 2016. "A Stochastic Programming Approach with Improved Multi-Criteria Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical and Electronic Equipment (WEEE)," Sustainability, MDPI, vol. 8(12), pages 1-28, December.
    15. Jung Seung Lee & Soo Kyung Kim & Su-Yol Lee, 2016. "Sustainable Supply Chain Capabilities: Accumulation, Strategic Types and Performance," Sustainability, MDPI, vol. 8(6), pages 1-16, May.
    16. Dries Couckuyt & Amy Van Looy, 2019. "Green BPM as a Business-Oriented Discipline: A Systematic Mapping Study and Research Agenda," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    17. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    18. Evangelos Gkanatsas & Harold Krikke, 2020. "Towards a Pro-Silience Framework: A Literature Review on Quantitative Modelling of Resilient 3PL Supply Chain Network Designs," Sustainability, MDPI, vol. 12(10), pages 1-25, May.
    19. Kanokporn Kungwalsong & Abraham Mendoza & Vasanth Kamath & Subramanian Pazhani & Jose Antonio Marmolejo-Saucedo, 2022. "An application of interactive fuzzy optimization model for redesigning supply chain for resilience," Annals of Operations Research, Springer, vol. 315(2), pages 1803-1839, August.
    20. Shashi & Piera Centobelli & Roberto Cerchione & Myriam Ertz, 2020. "Managing supply chain resilience to pursue business and environmental strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1215-1246, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2827-:d:761363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.