IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1551-d737091.html
   My bibliography  Save this article

Investigation and Optimization of the Performance of Energy Systems in the Textile Industry by Using CHP Systems

Author

Listed:
  • Tatiana Victorovna Morozova

    (Department of Accounting and Taxation, Plekhanov Russian University of Economics, 117997 Moscow, Russia)

  • Reza Alayi

    (Department of Mechanics, Germi Branch, Islamic Azad University, Germi 5651763764, Iran)

  • John William Grimaldo Guerrero

    (Departamento de Energía, Universidad de la Costa, Barranquilla 115012060, Colombia)

  • Mohsen Sharifpur

    (Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002, South Africa
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan)

  • Yaser Ebazadeh

    (Department of Computer Engineering, Germi Branch, Islamic Azad University, Germi 5651763764, Iran)

Abstract

With the general progression of small communities toward greater industrialization, energy consumption in this sector has increased. The continued growth of energy consumption seen in Iran, along with the low efficiency of production, transmission, and the distribution of energy, has led to the projection of an unfavorable future for this sector. The purpose of this study is to reduce fuel consumption and increase system efficiency by considering the optimal position of the turbine. In this regard, turbine modeling has been performed by considering different positioning scenarios. Afterward, the result from applying each scenario was compared with another scenario in terms of the parameters of electrical energy production, gas consumption, the final energy produced by the system, and the ratio of energy produced to overall gas consumption. After comparing different scenarios, considering all 4 parameters, Scenario 7 was selected as the most suitable positioning for gas turbine placement. Scenario 7 showed the highest gas consumption; of course, high power generation is the most desirable, the most reliable and, ultimately, the most profitable outcome of energy production. According to our results, the amount of electrical energy produced in the selected scenario is 4,991,160.3 kWh; the gas consumption in this case is 0.22972 kg/s.

Suggested Citation

  • Tatiana Victorovna Morozova & Reza Alayi & John William Grimaldo Guerrero & Mohsen Sharifpur & Yaser Ebazadeh, 2022. "Investigation and Optimization of the Performance of Energy Systems in the Textile Industry by Using CHP Systems," Sustainability, MDPI, vol. 14(3), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1551-:d:737091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    2. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    3. Bahram Ghorbani, 2021. "Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure Steam Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction ," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Surajet Khonjun & Rapeepan Pitakaso & Kanchana Sethanan & Natthapong Nanthasamroeng & Kiatisak Pranet & Chutchai Kaewta & Ponglert Sangkaphet, 2022. "Differential Evolution Algorithm for Optimizing the Energy Usage of Vertical Transportation in an Elevator (VTE), Taking into Consideration Rush Hour Management and COVID-19 Prevention," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    2. Bernice Magro & Simon Paul Borg, 2023. "A Feasibility Study on CHP Systems for Hotels in the Maltese Islands: A Comparative Analysis Based on Hotels’ Star Rating," Sustainability, MDPI, vol. 15(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Shuangshuang & Song, Jintao & Wang, Tingting & Liu, Yixue & He, Qing & Liu, Wenyi, 2021. "Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system," Energy, Elsevier, vol. 235(C).
    2. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    4. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    5. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    6. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    7. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    8. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    9. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    10. Wenting Zhang & Minxing Yue, 2021. "The application of building energy management system based on IoT technology in smart city," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 617-628, August.
    11. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    12. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    13. Liao, Zhirong & Zhong, Hua & Xu, Chao & Ju, Xing & Ye, Feng & Du, Xiaoze, 2020. "Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems," Applied Energy, Elsevier, vol. 269(C).
    14. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.
    15. Mohammad, Abdulrahman Th. & Bin Mat, Sohif & Sulaiman, M.Y. & Sopian, K. & Al-abidi, Abduljalil A., 2013. "Survey of hybrid liquid desiccant air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 186-200.
    16. Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Mishra, Dillip Kumar & Li, Li & Zhang, Jiangfeng & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Application of small-scale compressed air energy storage in the daily operation of an active distribution system," Energy, Elsevier, vol. 231(C).
    17. Su, Chengguo & Cheng, Chuntian & Wang, Peilin & Shen, Jianjian & Wu, Xinyu, 2019. "Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants," Applied Energy, Elsevier, vol. 242(C), pages 285-293.
    18. Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
    19. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    20. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1551-:d:737091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.