IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15280-d975870.html
   My bibliography  Save this article

Circular Design Principles Applied on Dye-Sensitized Solar Cells

Author

Listed:
  • Fabian Schoden

    (Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany)

  • Anna Katharina Schnatmann

    (Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany)

  • Tomasz Blachowicz

    (Institute of Physics—Center for Science and Education, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Hildegard Manz-Schumacher

    (Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany)

  • Eva Schwenzfeier-Hellkamp

    (Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany)

Abstract

In a world with growing demand for resources and a worsening climate crisis, it is imperative to research and put into practice more sustainable and regenerative products and processes. Especially in the energy sector, more sustainable systems that are recyclable, repairable and remanufacturable are needed. One promising technology is dye-sensitized solar cells (DSSCs). They can be manufactured with low energy input and can be made from non-toxic components. More than 70% of the environmental impact of a product is already determined in the design phase of a product, which is why it is essential to implement repair, remanufacturing and recycling concepts into the product design. In this publication, we explore appropriate design principles and business models that can be applied to DSSC technology. To realize this, we applied the concept of Circo Track, a method developed by the Technical University of Delft, to DSSCs and investigated which design concepts and business models are applicable. This method enables companies to transform a product that is disposed of after its useful life into one that can be used for longer and circulates in material cycles. The most important result is the description of a performance-based business model in which DSSCs are integrated into the customer’s building and green energy is provided as a service. During the operational phase, data is collected for product improvement and maintenance, and repair is executed when necessary. When the contract expires, it can be renewed, otherwise the modules are dismantled, reused, remanufactured or recycled.

Suggested Citation

  • Fabian Schoden & Anna Katharina Schnatmann & Tomasz Blachowicz & Hildegard Manz-Schumacher & Eva Schwenzfeier-Hellkamp, 2022. "Circular Design Principles Applied on Dye-Sensitized Solar Cells," Sustainability, MDPI, vol. 14(22), pages 1-32, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15280-:d:975870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Célestin Banza Lubaba Nkulu & Lidia Casas & Vincent Haufroid & Thierry De Putter & Nelly D. Saenen & Tony Kayembe-Kitenge & Paul Musa Obadia & Daniel Kyanika Wa Mukoma & Jean-Marie Lunda Ilunga & Tim , 2018. "Sustainability of artisanal mining of cobalt in DR Congo," Nature Sustainability, Nature, vol. 1(9), pages 495-504, September.
    2. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    3. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    4. Fabian Schoden & Marius Dotter & Dörthe Knefelkamp & Tomasz Blachowicz & Eva Schwenzfeier Hellkamp, 2021. "Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells," Energies, MDPI, vol. 14(13), pages 1-12, June.
    5. Fabian Schoden & Joscha Detzmeier & Anna Katharina Schnatmann & Tomasz Blachowicz & Eva Schwenzfeier-Hellkamp, 2022. "Investigating the Remanufacturing Potential of Dye-Sensitized Solar Cells," Sustainability, MDPI, vol. 14(9), pages 1-14, May.
    6. Davis, Kristopher O. & Rodgers, Marianne P. & Scardera, Giuseppe & Brooker, R. Paul & Seigneur, Hubert & Mohajeri, Nahid & Dhere, Neelkanth G. & Wohlgemuth, John & Schneller, Eric & Shiradkar, Narendr, 2016. "Manufacturing metrology for c-Si module reliability and durability Part II: Cell manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 225-252.
    7. Parisi, M.L. & Maranghi, S. & Vesce, L. & Sinicropi, A. & Di Carlo, A. & Basosi, R., 2020. "Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    9. Tadas RadaviÄ ius & Arvid van der Heide & Wolfram Palitzsch & Tom Rommens & Julius Denafas & Julius Denafas & Manuela TvaronaviÄ ienÄ— & Manuela TvaronaviÄ ienÄ—, 2021. "Circular solar industry supply chain through product technological design changes," Insights into Regional Development, VsI Entrepreneurship and Sustainability Center, vol. 3(3), pages 10-30, September.
    10. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    11. Katerina Anagnostou & Minas M. Stylianakis & Konstantinos Petridis & Emmanuel Kymakis, 2019. "Building an Organic Solar Cell: Fundamental Procedures for Device Fabrication," Energies, MDPI, vol. 12(11), pages 1-23, June.
    12. Schneller, Eric J. & Brooker, R. Paul & Shiradkar, Narendra S. & Rodgers, Marianne P. & Dhere, Neelkanth G. & Davis, Kristopher O. & Seigneur, Hubert P. & Mohajeri, Nahid & Wohlgemuth, John & Scardera, 2016. "Manufacturing metrology for c-Si module reliability and durability Part III: Module manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 992-1016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Schoden & Joscha Detzmeier & Anna Katharina Schnatmann & Tomasz Blachowicz & Eva Schwenzfeier-Hellkamp, 2022. "Investigating the Remanufacturing Potential of Dye-Sensitized Solar Cells," Sustainability, MDPI, vol. 14(9), pages 1-14, May.
    2. Aghaei, M. & Fairbrother, A. & Gok, A. & Ahmad, S. & Kazim, S. & Lobato, K. & Oreski, G. & Reinders, A. & Schmitz, J. & Theelen, M. & Yilmaz, P. & Kettle, J., 2022. "Review of degradation and failure phenomena in photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Mariusz Niekurzak & Wojciech Lewicki & Hasan Huseyin Coban & Agnieszka Brelik, 2023. "Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    4. Wu, Le & Yang, Yong & Yan, Ting & Wang, Yuqi & Zheng, Lan & Qian, Kun & Hong, Furong, 2020. "Sustainable design and optimization of co-processing of bio-oil and vacuum gas oil in an existing refinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Oliveira, Michele Cândida Carvalho de & Diniz Cardoso, Antônia Sonia Alves & Viana, Marcelo Machado & Lins, Vanessa de Freitas Cunha, 2018. "The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2299-2317.
    6. Parisi, M.L. & Maranghi, S. & Vesce, L. & Sinicropi, A. & Di Carlo, A. & Basosi, R., 2020. "Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    8. Jingsheng Huang & Yaojie Sun & He Wang & Junjun Zhang, 2019. "Regular and Irregular Performance Variation of Module String and Occurred Conditions for Potential Induced Degradation-Affected Crystalline Silicon Photovoltaic Power Plants," Energies, MDPI, vol. 12(22), pages 1-13, November.
    9. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Alonso-García, María del Carmen & Santos, José Domingo & Morales-Aragonés, José Ignacio & Alonso-Gómez, Víctor & Moretón-Fernández, Ángel & González, 2020. "Nondestructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I–V curves and visual tests: Experimental study and comparison," Energy, Elsevier, vol. 205(C).
    10. Emanuela Gatto & Raffaella Lettieri & Luigi Vesce & Mariano Venanzi, 2022. "Peptide Materials in Dye Sensitized Solar Cells," Energies, MDPI, vol. 15(15), pages 1-13, August.
    11. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    12. Tony Kayembe-Kitenge & Irene Kabange Umba & Paul Musa Obadia & Sebastien Mbuyi-Musanzayi & Patient Nkulu Banza & Patrick D. M. C. Katoto & Cyrille Katshiez Nawej & Georges Kalenga Ilunga & Vincent Hau, 2020. "Respiratory Health and Urinary Trace Metals among Artisanal Stone-Crushers: A Cross-Sectional Study in Lubumbashi, DR Congo," IJERPH, MDPI, vol. 17(24), pages 1-12, December.
    13. Liao, Qijun & Li, Shaoyuan & Xi, Fengshuo & Tong, Zhongqiu & Chen, Xiuhua & Wan, Xiaohan & Ma, Wenhui & Deng, Rong, 2023. "High-performance silicon carbon anodes based on value-added recycling strategy of end-of-life photovoltaic modules," Energy, Elsevier, vol. 281(C).
    14. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    15. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    16. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    17. Rami David Orejon-Sanchez & Jose Ramon Andres-Diaz & Alfonso Gago-Calderon, 2021. "Autonomous Photovoltaic LED Urban Street Lighting: Technical, Economic, and Social Viability Analysis Based on a Case Study," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    18. Didier Malamba-Lez & Désire Tshala-Katumbay & Virginie Bito & Jean-Michel Rigo & Richie Kipenge Kyandabike & Eric Ngoy Yolola & Philippe Katchunga & Béatrice Koba-Bora & Dophra Ngoy-Nkulu, 2021. "Concurrent Heavy Metal Exposures and Idiopathic Dilated Cardiomyopathy: A Case-Control Study from the Katanga Mining Area of the Democratic Republic of Congo," IJERPH, MDPI, vol. 18(9), pages 1-21, May.
    19. Fabian Schoden & Marius Dotter & Dörthe Knefelkamp & Tomasz Blachowicz & Eva Schwenzfeier Hellkamp, 2021. "Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells," Energies, MDPI, vol. 14(13), pages 1-12, June.
    20. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15280-:d:975870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.