IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14476-d963077.html
   My bibliography  Save this article

Dynamic Pricing Strategy of Charging Station Based on Traffic Assignment Simulation

Author

Listed:
  • Jiyuan Tan

    (Beijing Key Lab of Urban Intelligent Traffic Control Technology, North China University of Technology, Beijing 100144, China)

  • Fuyu Liu

    (Beijing Key Lab of Urban Intelligent Traffic Control Technology, North China University of Technology, Beijing 100144, China)

  • Na Xie

    (School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, China)

  • Weiwei Guo

    (Beijing Key Lab of Urban Intelligent Traffic Control Technology, North China University of Technology, Beijing 100144, China)

  • Wenxiang Wu

    (Beijing Key Lab of Urban Intelligent Traffic Control Technology, North China University of Technology, Beijing 100144, China)

Abstract

The number of electric vehicles is increasing rapidly worldwide, leading to increasing demand for charging. This will negatively impact the grid. Therefore, it is essential to relieve the power grid operation pressure by changing the charging behaviour of users. In this paper, the charging behaviour of electric vehicles was guided by price instruments to maintain grid balance This paper uses travel simulation to establish the relationship between travel demand and electricity prices. The results were evaluated through the amount of grid voltage drop and network loss. Furthermore, we used the differential evolutionary algorithm to calculate the optimal operation status of the grid, which contains the minimal network loss and maximal voltage drop at different charging stations and the charging price. Finally, the effectiveness of the mechanism proposed in this paper was compared with other simulation examples. The results showed that the pricing strategy could guide users’ charging choices and maintain the grid load balancing. The simulation results show that the average bus voltage increases by 1.26% and 6.59%, respectively, under different requirements.

Suggested Citation

  • Jiyuan Tan & Fuyu Liu & Na Xie & Weiwei Guo & Wenxiang Wu, 2022. "Dynamic Pricing Strategy of Charging Station Based on Traffic Assignment Simulation," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14476-:d:963077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14476/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14476/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    2. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    2. Dae-Jin Kim & Kyung-Sang Ryu & Hee-Sang Ko & Byungki Kim, 2020. "Optimal Operation Strategy of ESS for EV Charging Infrastructure for Voltage Stabilization in a Secondary Feeder of a Distribution System," Energies, MDPI, vol. 13(1), pages 1-22, January.
    3. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Byungki Kim & Jae-Bum Park & Dae-Jin Kim, 2021. "A Study on the Power Line Operation Strategy by the Energy Storage System to Ensure Hosting Capacity of Distribution Feeder with Electrical Vehicle Charging Infrastructure," Energies, MDPI, vol. 14(21), pages 1-17, October.
    5. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    6. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    7. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    8. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    9. Bunga Aditi & Hafizah & Iskandar Muda, 2019. "The Effect of Services, Price Discount and Brand Equity on Consumer Purchase Decisions in Go-Jek a Technology Startup Transport," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 5(2), pages 21-31, June.
    10. Sheng, Yujie & Guo, Qinglai & Chen, Feng & Xu, Luo & Zhang, Yang, 2021. "Coordinated pricing of coupled urban Power-Traffic Networks: The value of information sharing," Applied Energy, Elsevier, vol. 301(C).
    11. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    12. Wu, Di & Radhakrishnan, Nikitha & Huang, Sen, 2019. "A hierarchical charging control of plug-in electric vehicles with simple flexibility model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).
    14. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    15. Achraf Saadaoui & Mohammed Ouassaid & Mohamed Maaroufi, 2023. "Overview of Integration of Power Electronic Topologies and Advanced Control Techniques of Ultra-Fast EV Charging Stations in Standalone Microgrids," Energies, MDPI, vol. 16(3), pages 1-21, January.
    16. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    17. Mohammad Shadnam Zarbil & Abolfazl Vahedi & Hossein Azizi Moghaddam & Pavel Aleksandrovich Khlyupin, 2022. "Design and Sizing of Electric Bus Flash Charger Based on a Flywheel Energy Storage System: A Case Study," Energies, MDPI, vol. 15(21), pages 1-23, October.
    18. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    19. Mortaz, Ebrahim & Vinel, Alexander & Dvorkin, Yury, 2019. "An optimization model for siting and sizing of vehicle-to-grid facilities in a microgrid," Applied Energy, Elsevier, vol. 242(C), pages 1649-1660.
    20. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14476-:d:963077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.