IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13356-d944697.html
   My bibliography  Save this article

Experimental Assessment of the Efficiency of Two-Phase Ejector Components for Isobutane

Author

Listed:
  • Kamil Śmierciew

    (Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Adam Dudar

    (Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Dariusz Butrymowicz

    (Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Jerzy Gagan

    (Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Paweł Jakończuk

    (Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Huiming Zou

    (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100045, China)

Abstract

Two-phase ejectors as well as single phase ejectors can be applied in many branches of industry: refrigeration and heat pump systems, chemical engineering, food processing, and others. Due to the complicated nature of the process of momentum transfer in two-phase ejectors, their design procedure based on the accurate theoretical prediction of the ejector performance is still an open issue. The paper provides its own experimental results of the velocity coefficients of the components of the two-phase ejector, i.e., the motive nozzle, suction chamber, mixing chamber, and diffuser. The results were obtained in the case of isobutane as the working fluid. It was demonstrated that the velocity coefficients may not be treated as constant quantities. Therefore, our own proposed dimensionless relationships describe the velocity coefficients of the components of the ejector that may be applied in the design procedure of the ejector. The two physical parameters, the wet vapour quality and the volumetric entrainment ratio, were selected as the key parameters. In addition, the aspects of the prediction of the critical mass flow rate of the motive nozzles was considered on the basis of the Henry–Fauske model. It was demonstrated that the model accurately predicts the two-phase critical flow under the conditions of a higher range of wet vapour quality.

Suggested Citation

  • Kamil Śmierciew & Adam Dudar & Dariusz Butrymowicz & Jerzy Gagan & Paweł Jakończuk & Huiming Zou, 2022. "Experimental Assessment of the Efficiency of Two-Phase Ejector Components for Isobutane," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13356-:d:944697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeon, Yongseok & Jung, Jongho & Kim, Dongwoo & Kim, Sunjae & Kim, Yongchan, 2017. "Effects of ejector geometries on performance of ejector-expansion R410A air conditioner considering cooling seasonal performance factor," Applied Energy, Elsevier, vol. 205(C), pages 761-768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    2. Tongchana Thongtip & Natthawut Ruangtrakoon, 2021. "Real Air-Conditioning Performance of Ejector Refrigerator Based Air-Conditioner Powered by Low Temperature Heat Source," Energies, MDPI, vol. 14(3), pages 1-20, January.
    3. Jeon, Yongseok & Kim, Sunjae & Lee, Sang Hun & Chung, Hyun Joon & Kim, Yongchan, 2020. "Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants," Applied Energy, Elsevier, vol. 278(C).
    4. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    5. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    6. Yongseok Jeon & Hoon Kim & Jae Hwan Ahn & Sanghoon Kim, 2020. "Effects of Nozzle Exit Position on Condenser Outlet Split Ejector-Based R600a Household Refrigeration Cycle," Energies, MDPI, vol. 13(19), pages 1-12, October.
    7. Wen, Chuang & Rogie, Brice & Kærn, Martin Ryhl & Rothuizen, Erasmus, 2020. "A first study of the potential of integrating an ejector in hydrogen fuelling stations for fuelling high pressure hydrogen vehicles," Applied Energy, Elsevier, vol. 260(C).
    8. Bai, Tao & Yan, Gang & Yu, Jianlin, 2019. "Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants," Energy, Elsevier, vol. 179(C), pages 850-862.
    9. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    10. Bai, Tao & Yan, Gang & Yu, Jianlin, 2018. "Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer," Energy, Elsevier, vol. 157(C), pages 647-657.
    11. Jeon, Yongseok & Kim, Dongwoo & Jung, Jongho & Jang, Dong Soo & Kim, Yongchan, 2018. "Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a," Energy, Elsevier, vol. 161(C), pages 1085-1095.
    12. Damoon Aghazadeh Dokandari & S. M. S. Mahmoudi & M. Bidi & Ramin Haghighi Khoshkhoo & Marc A. Rosen, 2018. "First and Second Law Analyses of Trans-critical N 2 O Refrigeration Cycle Using an Ejector," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    13. Liu, Ye & Yu, Jianlin, 2018. "Performance analysis of an advanced ejector-expansion autocascade refrigeration cycle," Energy, Elsevier, vol. 165(PB), pages 859-867.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13356-:d:944697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.