IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i1p529-d717497.html
   My bibliography  Save this article

Strategy for Locating People to Reduce the Transmission of COVID-19 Using Different Interference Measures

Author

Listed:
  • Brenda Valenzuela-Fonseca

    (School of Industrial Engineering, Universidad del Bío-Bío, Concepción 4030000, Chile)

  • Rodrigo Linfati

    (Department of Industrial Engineering, Universidad del Bío-Bío, Concepción 4030000, Chile)

  • John Willmer Escobar

    (Department of Accounting and Finance, Universidad del Valle, Cali 760001, Colombia)

Abstract

COVID-19 is generally transmitted from person to person through small droplets of saliva emitted when talking, sneezing, coughing, or breathing. For this reason, social distancing and ventilation have been widely emphasized to control the pandemic. The spread of the virus has brought with it many challenges in locating people under distance constraints. The effects of wakes between turbines have been studied extensively in the literature on wind energy, and there are well-established interference models. Does this apply to the propagation functions of the virus? In this work, a parallel relationship between the two problems is proposed. A mixed-integer linear programming (MIP) model and a mixed-integer quadratic programming model (MIQP) are formulated to locate people to avoid the spread of COVID-19. Both models were constructed according to the distance constraints proposed by the World Health Organization and the interference functions representing the effects of wake between turbines. Extensive computational tests show that people should not be less than two meters apart, in agreement with the adapted Wells–Riley model, which indicates that 1.6 to 3.0 m (5.2 to 9.8 ft) is the safe social distance when considering the aerosol transmission of large droplets exhaled when speaking, while the distance can be up to 8.2 m (26 ft) if all the droplets in a calm air environment are taken into account.

Suggested Citation

  • Brenda Valenzuela-Fonseca & Rodrigo Linfati & John Willmer Escobar, 2022. "Strategy for Locating People to Reduce the Transmission of COVID-19 Using Different Interference Measures," Sustainability, MDPI, vol. 14(1), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:1:p:529-:d:717497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Kwan Lo & Xiaowei Huang & Ka-Luen Cheung, 2022. "Toward a Design Framework for Mathematical Modeling Activities: An Analysis of Official Exemplars in Hong Kong Mathematics Education," Sustainability, MDPI, vol. 14(15), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    2. Basnarkov, Lasko, 2021. "SEAIR Epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Mishra, A.M. & Purohit, S.D. & Owolabi, K.M. & Sharma, Y.D., 2020. "A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Faïçal Ndaïrou & Iván Area & Delfim F. M. Torres, 2020. "Mathematical Modeling of Japanese Encephalitis under Aquatic Environmental Effects," Mathematics, MDPI, vol. 8(11), pages 1-14, October.
    7. Florian Dorn & Sahamoddin Khailaie & Marc Stoeckli & Sebastian C. Binder & Tanmay Mitra & Berit Lange & Stefan Lautenbacher & Andreas Peichl & Patrizio Vanella & Timo Wollmershäuser & Clemens Fuest & , 2023. "The common interests of health protection and the economy: evidence from scenario calculations of COVID-19 containment policies," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(1), pages 67-74, February.
    8. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    9. Usama H. Issa & Ashraf Balabel & Mohammed Abdelhakeem & Medhat M. A. Osman, 2021. "Developing a Risk Model for Assessment and Control of the Spread of COVID-19," Risks, MDPI, vol. 9(2), pages 1-15, February.
    10. Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Castañeda, Antonio Rafael Selva & Ramirez-Torres, Erick Eduardo & Valdés-García, Luis Eugenio & Morandeira-Padrón, Hilda María & Yanez, Diana Sedal & Montijano, Juan I. & Cabrales, Luis Enrique Bergue, 2023. "Modified SEIR epidemic model including asymptomatic and hospitalized cases with correct demographic evolution," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    12. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "An Extended SEIR Model with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(6), pages 1-16, March.
    13. Sinitsyn, E. V. & Tolmachev, A. V. & Ovchinnikov, A. S., 2020. "Socio-economic factors in the spread of SARS-COV-2 across Russian regions," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 6(3), pages 129-145.
    14. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    15. Ahmad, Shabir & Ullah, Aman & Al-Mdallal, Qasem M. & Khan, Hasib & Shah, Kamal & Khan, Aziz, 2020. "Fractional order mathematical modeling of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    16. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    19. Vahideh Vakil & Wade Trappe, 2022. "Projecting the Pandemic Trajectory through Modeling the Transmission Dynamics of COVID-19," IJERPH, MDPI, vol. 19(8), pages 1-28, April.
    20. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:1:p:529-:d:717497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.