IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics096007792101078x.html
   My bibliography  Save this article

Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis

Author

Listed:
  • Zhu, Ligang
  • Li, Xiang
  • Xu, Fei
  • Yin, Zhiyong
  • Jin, Jun
  • Liu, Zhilong
  • Qi, Hong
  • Shuai, Jianwei

Abstract

The newly identified cell death type, pyroptosis plays crucial roles in various diseases. Most recently, mounting evidence accumulates that pyroptotic signaling is highly correlated with coronavirus disease 2019 (COVID-19). Thus, understanding the induction of the pyroptotic signaling and dissecting the detail molecular control mechanisms are urgently needed. Based on recent experimental studies, a core regulatory model of the pyroptotic signaling is constructed to investigate the intricate crosstalk dynamics between the two cell death types, i.e., pyroptosis and secondary pyroptosis. The model well reproduces the experimental observations under different conditions. Sensitivity analysis determines that only the expression level of caspase-1 or GSDMD has the potential to individually change death modes. The decrease of caspase-1 or GSDMD level switches cell death from pyroptosis to secondary pyroptosis. Besides, eight biochemical reactions are identified that can efficiently switch death modes. While from the viewpoint of bifurcation analysis, the expression level of caspase-3 is further identified and twelve biochemical reactions are obtained. The coexistence of pyroptosis and secondary pyroptosis is predicted to be observed not only within the bistable range, but also within proper monostable range, presenting two potential different control mechanisms. Combined with the landscape theory, we further explore the stochastic dynamic and global stability of the pyroptotic system, accurately quantifying how each component mediates the individual occurrence probability of pyroptosis and secondary pyroptosis. Overall, this study sheds new light on the intricate crosstalk of the pyroptotic signaling and uncovers the regulatory mechanisms of various stable state transitions, providing potential clues to guide the development for prevention and treatment of pyroptosis-related diseases.

Suggested Citation

  • Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s096007792101078x
    DOI: 10.1016/j.chaos.2021.111724
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792101078X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhibin Zhang & Ying Zhang & Shiyu Xia & Qing Kong & Shunying Li & Xing Liu & Caroline Junqueira & Karla F. Meza-Sosa & Temy Mo Yin Mok & James Ansara & Satyaki Sengupta & Yandan Yao & Hao Wu & Judy Li, 2020. "Gasdermin E suppresses tumour growth by activating anti-tumour immunity," Nature, Nature, vol. 579(7799), pages 415-420, March.
    2. Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Malik, Yashpal Singh & Obli Rajendran, Vinodhkumar & MA, Ikram & Pande, Tripti & Ravichandran, Karthikeyan & Jaganathasamy, Nagaraj & Ganesh, Balasubramanian & Santhakumar, Aridoss & Tazerji, Sina Sal, 2021. "Responses to COVID-19 in South Asian Association for Regional Cooperation (SAARC) countries in 2020, a data analysis during a world of crises," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Corey Rogers & Dan A. Erkes & Alexandria Nardone & Andrew E. Aplin & Teresa Fernandes-Alnemri & Emad S. Alnemri, 2019. "Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    5. Xing Liu & Zhibin Zhang & Jianbin Ruan & Youdong Pan & Venkat Giri Magupalli & Hao Wu & Judy Lieberman, 2016. "Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores," Nature, Nature, vol. 535(7610), pages 153-158, July.
    6. Kohsuke Tsuchiya & Shinsuke Nakajima & Shoko Hosojima & Dinh Nguyen & Tsuyoshi Hattori & Thuong Le & Osamu Hori & Mamunur Rashid Mahib & Yoshifumi Yamaguchi & Masayuki Miura & Takeshi Kinoshita & Hiro, 2019. "Caspase-1 initiates apoptosis in the absence of gasdermin D," Nature Communications, Nature, vol. 10(1), pages 1-19, December.
    7. Kim Newton & Katherine E. Wickliffe & Allie Maltzman & Debra L. Dugger & Rohit Reja & Yue Zhang & Merone Roose-Girma & Zora Modrusan & Meredith S. Sagolla & Joshua D. Webster & Vishva M. Dixit, 2019. "Activity of caspase-8 determines plasticity between cell death pathways," Nature, Nature, vol. 575(7784), pages 679-682, November.
    8. Nobuhiko Kayagaki & Irma B. Stowe & Bettina L. Lee & Karen O’Rourke & Keith Anderson & Søren Warming & Trinna Cuellar & Benjamin Haley & Merone Roose-Girma & Qui T. Phung & Peter S. Liu & Jennie R. Li, 2015. "Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling," Nature, Nature, vol. 526(7575), pages 666-671, October.
    9. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Yupeng Wang & Wenqing Gao & Xuyan Shi & Jingjin Ding & Wang Liu & Huabin He & Kun Wang & Feng Shao, 2017. "Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin," Nature, Nature, vol. 547(7661), pages 99-103, July.
    12. Jianjin Shi & Yue Zhao & Kun Wang & Xuyan Shi & Yue Wang & Huanwei Huang & Yinghua Zhuang & Tao Cai & Fengchao Wang & Feng Shao, 2015. "Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death," Nature, Nature, vol. 526(7575), pages 660-665, October.
    13. Corey Rogers & Teresa Fernandes-Alnemri & Lindsey Mayes & Diana Alnemri & Gino Cingolani & Emad S. Alnemri, 2017. "Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Jun & Xu, Fei & Liu, Zhilong & Shuai, Jianwei & Li, Xiang, 2024. "Quantifying the underlying landscape, entropy production and biological path of the cell fate decision between apoptosis and pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Kumar, Viney & Bhattacharyya, Samit, 2023. "Nonlinear effect of sentiments and opinion sharing on vaccination decision in face of an outbreak: A multiplex network approach," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Wei & Beidi Lan & Tao Zheng & Lin Yang & Xiaoxia Zhang & Lele Cheng & Gulinigaer Tuerhongjiang & Zuyi Yuan & Yue Wu, 2023. "GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Fengxia Ma & Laxman Ghimire & Qian Ren & Yuping Fan & Tong Chen & Arumugam Balasubramanian & Alan Hsu & Fei Liu & Hongbo Yu & Xuemei Xie & Rong Xu & Hongbo R. Luo, 2024. "Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Hanhan Ning & Shan Huang & Yang Lei & Renyong Zhi & Han Yan & Jiaxing Jin & Zhenyu Hu & Kaimin Guo & Jinhua Liu & Jie Yang & Zhe Liu & Yi Ba & Xin Gao & Deqing Hu, 2022. "Enhancer decommissioning by MLL4 ablation elicits dsRNA-interferon signaling and GSDMD-mediated pyroptosis to potentiate anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Jin, Jun & Xu, Fei & Liu, Zhilong & Shuai, Jianwei & Li, Xiang, 2024. "Quantifying the underlying landscape, entropy production and biological path of the cell fate decision between apoptosis and pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Si-Jia Sun & Xiao-Dong Jiao & Zhi-Gang Chen & Qi Cao & Jia-Hui Zhu & Qi-Rui Shen & Yi Liu & Zhen Zhang & Fang-Fang Xu & Yu Shi & Jie Tong & Shen-Xi Ouyang & Jiang-Tao Fu & Yi Zhao & Jun Ren & Dong-Jie, 2024. "Gasdermin-E-mediated pyroptosis drives immune checkpoint inhibitor-associated myocarditis via cGAS-STING activation," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    6. Lisa D. J. Schiffelers & Yonas M. Tesfamariam & Lea-Marie Jenster & Stefan Diehl & Sophie C. Binder & Sabine Normann & Jonathan Mayr & Steffen Pritzl & Elena Hagelauer & Anja Kopp & Assaf Alon & Matth, 2024. "Antagonistic nanobodies implicate mechanism of GSDMD pore formation and potential therapeutic application," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Stefania A. Mari & Kristyna Pluhackova & Joka Pipercevic & Matthew Leipner & Sebastian Hiller & Andreas Engel & Daniel J. Müller, 2022. "Gasdermin-A3 pore formation propagates along variable pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Xionghui Ding & Hiroto Kambara & Rongxia Guo & Apurva Kanneganti & Maikel Acosta-Zaldívar & Jiajia Li & Fei Liu & Ting Bei & Wanjun Qi & Xuemei Xie & Wenli Han & Ningning Liu & Cunling Zhang & Xiaoyu , 2021. "Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    9. Keyla S. G. de Sá & Luana A. Amaral & Tamara S. Rodrigues & Adriene Y. Ishimoto & Warrison A. C. Andrade & Leticia Almeida & Felipe Freitas-Castro & Sabrina S. Batah & Sergio C. Oliveira & Mônica T. P, 2023. "Gasdermin-D activation promotes NLRP3 activation and host resistance to Leishmania infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Kei-ichiro Arimoto & Sayuri Miyauchi & Ty D. Troutman & Yue Zhang & Mengdan Liu & Samuel A. Stoner & Amanda G. Davis & Jun-Bao Fan & Yi-Jou Huang & Ming Yan & Christopher K. Glass & Dong-Er Zhang, 2023. "Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Jing Lin & Shihui Sun & Kui Zhao & Fei Gao & Renling Wang & Qi Li & Yanlong Zhou & Jing Zhang & Yue Li & Xinyue Wang & Le Du & Shuai Wang & Zi Li & Huijun Lu & Yungang Lan & Deguang Song & Wei Guo & Y, 2023. "Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Yuan Lu & Wenbo He & Xin Huang & Yu He & Xiaojuan Gou & Xiaoke Liu & Zhe Hu & Weize Xu & Khaista Rahman & Shan Li & Sheng Hu & Jie Luo & Gang Cao, 2021. "Strategies to package recombinant Adeno-Associated Virus expressing the N-terminal gasdermin domain for tumor treatment," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    17. Yingqi Deng & Eleonore Ostermann & Wolfram Brune, 2024. "A cytomegalovirus inflammasome inhibitor reduces proinflammatory cytokine release and pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Jakob Hartmann & Thomas Bajaj & Joy Otten & Claudia Klengel & Tim Ebert & Anne-Kathrin Gellner & Ellen Junglas & Kathrin Hafner & Elmira A. Anderzhanova & Fiona Tang & Galen Missig & Lindsay Rexrode &, 2024. "SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    19. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    20. Basnarkov, Lasko, 2021. "SEAIR Epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s096007792101078x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.