IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9672-d881448.html
   My bibliography  Save this article

Innovative PEDRERA Model Tool Boosting Sustainable and Feasible Renovation Programs at District Scale in Spain

Author

Listed:
  • Paolo Civiero

    (Department of Architecture, University of Roma Tre, 00153 Rome, Italy
    Thermal Energy and Building Performance Group, IREC—Catalonia Institute for Energy Research, 08930 Sant Adrià del Besos, Barcelona, Spain)

  • Jordi Pascual

    (Thermal Energy and Building Performance Group, IREC—Catalonia Institute for Energy Research, 08930 Sant Adrià del Besos, Barcelona, Spain)

  • Joaquim Arcas Abella

    (Cíclica Arquitectura SCCL, 08173 Sant Cugat del Vallès, Barcelona, Spain)

  • Jaume Salom

    (Thermal Energy and Building Performance Group, IREC—Catalonia Institute for Energy Research, 08930 Sant Adrià del Besos, Barcelona, Spain)

Abstract

In accordance with the new recovery plan, Next Generation EU (NGEU), and the need to speed up the transition of cities towards a new sustainable model, this paper provides an overview of the outcomes of the PEDRERA project, which is focused on the development of a novel tool able to calculate multiple key performance indicators that can support renovation actions at the district level, according to a Positive Energy District (PED) concept. The new tool is programmed in Python programming language and is useful to evaluate several strategies for the renovation of existing building stock. It moves from a quick list of input according to several Public Private Partnership (PPP) models, in addition to other potential business models. Furthermore, the design of the model is supported by a step-by-step methodology in order to deal with a “financial appraisal” that is interactive in each context, customizable for each stakeholder, and user-friendly. The paper describes this innovative tool and reports on the stronger potential that this model can offer when it runs in a QGIS software environment and interacts with a PostgreSQL database, as demonstrated in two case studies located in Spain.

Suggested Citation

  • Paolo Civiero & Jordi Pascual & Joaquim Arcas Abella & Jaume Salom, 2022. "Innovative PEDRERA Model Tool Boosting Sustainable and Feasible Renovation Programs at District Scale in Spain," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9672-:d:881448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Civiero & Jordi Pascual & Joaquim Arcas Abella & Ander Bilbao Figuero & Jaume Salom, 2021. "PEDRERA. Positive Energy District Renovation Model for Large Scale Actions," Energies, MDPI, vol. 14(10), pages 1-21, May.
    2. Giulia Turci & Beril Alpagut & Paolo Civiero & Michal Kuzmic & Serena Pagliula & Gilda Massa & Vicky Albert-Seifried & Oscar Seco & Silvia Soutullo, 2021. "A Comprehensive PED-Database for Mapping and Comparing Positive Energy Districts Experiences at European Level," Sustainability, MDPI, vol. 14(1), pages 1-24, December.
    3. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    4. Andrea Gabaldón Moreno & Fredy Vélez & Beril Alpagut & Patxi Hernández & Cecilia Sanz Montalvillo, 2021. "How to Achieve Positive Energy Districts for Sustainable Cities: A Proposed Calculation Methodology," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    5. Jaume Salom & Meril Tamm & Inger Andresen & Davide Cali & Ábel Magyari & Viktor Bukovszki & Rebeka Balázs & Paraskevi Vivian Dorizas & Zsolt Toth & Sheikh Zuhaib & Clara Mafé & Caroline Cheng & András, 2021. "An Evaluation Framework for Sustainable Plus Energy Neighbourhoods: Moving Beyond the Traditional Building Energy Assessment," Energies, MDPI, vol. 14(14), pages 1-25, July.
    6. Silvia Bossi & Christoph Gollner & Sarah Theierling, 2020. "Towards 100 Positive Energy Districts in Europe: Preliminary Data Analysis of 61 European Cases," Energies, MDPI, vol. 13(22), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Dell’Unto & Louise-Nour Sassenou & Lorenzo Olivieri & Francesca Olivieri, 2023. "Technical Feasibility for the Boosting of Positive Energy Districts (PEDs) in Existing Mediterranean Districts: A Methodology and Case Study in Alcorcón, Spain," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    2. Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savis Gohari Krangsås & Koen Steemers & Thaleia Konstantinou & Silvia Soutullo & Mingming Liu & Emanuela Giancola & Bahri Prebreza & Touraj Ashrafian & Lina Murauskaitė & Nienke Maas, 2021. "Positive Energy Districts: Identifying Challenges and Interdependencies," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    2. Adam X. Hearn & Raul Castaño-Rosa, 2021. "Towards a Just Energy Transition, Barriers and Opportunities for Positive Energy District Creation in Spain," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    3. Federica Leone & Francesco Reda & Ala Hasan & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2022. "Lessons Learned from Positive Energy District (PED) Projects: Cataloguing and Analysing Technology Solutions in Different Geographical Areas in Europe," Energies, MDPI, vol. 16(1), pages 1-28, December.
    4. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    5. Ilaria Marotta & Francesco Guarino & Sonia Longo & Maurizio Cellura, 2021. "Environmental Sustainability Approaches and Positive Energy Districts: A Literature Review," Sustainability, MDPI, vol. 13(23), pages 1-45, November.
    6. Andrea Kerstens & Angela Greco, 2023. "From Buildings to Communities: Exploring the Role of Financial Schemes for Sustainable Plus Energy Neighborhoods," Energies, MDPI, vol. 16(14), pages 1-18, July.
    7. Hearn, Adam X., 2022. "Positive energy district stakeholder perceptions and measures for energy vulnerability mitigation," Applied Energy, Elsevier, vol. 322(C).
    8. Paola Clerici Maestosi, 2022. "Smart Cities and Positive Energy Districts: Urban Perspectives in 2021," Energies, MDPI, vol. 15(6), pages 1-5, March.
    9. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    10. Luca Casamassima & Luigi Bottecchia & Axel Bruck & Lukas Kranzl & Reinhard Haas, 2022. "Economic, social, and environmental aspects of Positive Energy Districts—A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    11. Irene M. Zarco-Soto & Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán, 2021. "Influence of Population Income on Energy Consumption and CO 2 Emissions in Buildings of Cities," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    12. Derkenbaeva, Erkinai & Halleck Vega, Solmaria & Hofstede, Gert Jan & van Leeuwen, Eveline, 2022. "Positive energy districts: Mainstreaming energy transition in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    14. Ali Hainoun & Hans-Martin Neumann & Naomi Morishita-Steffen & Baptiste Mougeot & Étienne Vignali & Florian Mandel & Felix Hörmann & Sebastian Stortecky & Katharina Walter & Martin Kaltenhauser-Barth &, 2022. "Smarter Together: Monitoring and Evaluation of Integrated Building Solutions for Low-Energy Districts of Lighthouse Cities Lyon, Munich, and Vienna," Energies, MDPI, vol. 15(19), pages 1-26, September.
    15. Axel Bruck & Luca Casamassima & Ardak Akhatova & Lukas Kranzl & Kostas Galanakis, 2022. "Creating Comparability among European Neighbourhoods to Enable the Transition of District Energy Infrastructures towards Positive Energy Districts," Energies, MDPI, vol. 15(13), pages 1-21, June.
    16. Nikolaos Efkarpidis & Andrija Goranović & Chen-Wei Yang & Martin Geidl & Ingo Herbst & Stefan Wilker & Thilo Sauter, 2022. "A Generic Framework for the Definition of Key Performance Indicators for Smart Energy Systems at Different Scales," Energies, MDPI, vol. 15(4), pages 1-30, February.
    17. Axel Bruck & Santiago Díaz Ruano & Hans Auer, 2021. "A Critical Perspective on Positive Energy Districts in Climatically Favoured Regions: An Open-Source Modelling Approach Disclosing Implications and Possibilities," Energies, MDPI, vol. 14(16), pages 1-25, August.
    18. Prades-Gil, C. & Viana-Fons, J.D. & Masip, X. & Cazorla-Marín, A. & Gómez-Navarro, T., 2023. "An agile heating and cooling energy demand model for residential buildings. Case study in a mediterranean city residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    19. Konstantinos Kourtzanidis & Komninos Angelakoglou & Vasilis Apostolopoulos & Paraskevi Giourka & Nikolaos Nikolopoulos, 2021. "Assessing Impact, Performance and Sustainability Potential of Smart City Projects: Towards a Case Agnostic Evaluation Framework," Sustainability, MDPI, vol. 13(13), pages 1-38, July.
    20. Bruck, Axel & Díaz Ruano, Santiago & Auer, Hans, 2022. "One piece of the puzzle towards 100 Positive Energy Districts (PEDs) across Europe by 2025: An open-source approach to unveil favourable locations of PV-based PEDs from a techno-economic perspective," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9672-:d:881448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.