IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8874-d867034.html
   My bibliography  Save this article

A Fuzzy-Logic Approach Based on Driver Decision-Making Behavior Modeling and Simulation

Author

Listed:
  • Abdulla I. M. Almadi

    (Department of Civil and Architectural Engineering, Lawrence Technological University, 21000 West Ten Mile Road, Southfield, MI 48075, USA
    Department of Civil Faculty of Technical Sciences, Sebha P.O. Box 18758, Libya)

  • Rabia Emhamed Al Mamlook

    (Industrial Engineering and Engineering Management, Western Michigan University Kalamazoo, Kalamazoo, MI 49008, USA
    Department of Aviation Engineering, Al-Zawiya University, Al-Zawiya P.O. Box 16418, Libya)

  • Yahya Almarhabi

    (Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
    Center of Excellence in Trauma and Accidents, King Abdulaziz University, Jeddah 22254, Saudi Arabia)

  • Irfan Ullah

    (School of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China
    Department of Business and Administration, ILMA University, Karachi 75190, Pakistan)

  • Arshad Jamal

    (Transportation and Traffic Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

  • Nishantha Bandara

    (Department of Civil and Architectural Engineering, Lawrence Technological University, 21000 West Ten Mile Road, Southfield, MI 48075, USA)

Abstract

The present study proposes a decision-making model based on different models of driver behavior, aiming to ensure integration between road safety and crash reduction based on an examination of speed limitations under weather conditions. The present study investigated differences in road safety attitude, driver behavior, and weather conditions I-69 in Flint, Genesee County, Michigan, using the fuzzy logic approach. A questionnaire-based survey was conducted among a sample of Singaporean ( n = 100) professional drivers. Safety level was assessed in relation to speed limits to determine whether the proposed speed limit contributed to a risky or safe situation. The experimental results show that the speed limits investigated on different roads/in different weather were based on the participants’ responses. The participants could increase or keep their current speed limit or reduce their speed limit a little or significantly. The study results were used to determine the speed limits needed on different roads/in different weather to reduce the number of crashes and to implement safe driving conditions based on the weather. Changing the speed limit from 80 mph to 70 mph reduced the number of crashes occurring under wet road conditions. According to the results of the fuzzy logic study algorithm, a driver’s emotions can predict outputs. For this study, the fuzzy logic algorithm evaluated drivers’ emotions according to the relation between the weather/road condition and the speed limit. The fuzzy logic would contribute to assessing a powerful feature of human control. The fuzzy logic algorithm can explain smooth relationships between the input and output. The input–output relationship estimated by fuzzy logic was used to understand differences in drivers’ feelings in varying road/weather conditions at different speed limits.

Suggested Citation

  • Abdulla I. M. Almadi & Rabia Emhamed Al Mamlook & Yahya Almarhabi & Irfan Ullah & Arshad Jamal & Nishantha Bandara, 2022. "A Fuzzy-Logic Approach Based on Driver Decision-Making Behavior Modeling and Simulation," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8874-:d:867034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arshad Jamal & Waleed Umer, 2020. "Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network," IJERPH, MDPI, vol. 17(20), pages 1-22, October.
    2. Muhammad Safdar & Arshad Jamal & Hassan M. Al-Ahmadi & Muhammad Tauhidur Rahman & Meshal Almoshaogeh, 2022. "Analysis of the Influential Factors towards Adoption of Car-Sharing: A Case Study of a Megacity in a Developing Country," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Ijaz & Lan Liu & Yahya Almarhabi & Arshad Jamal & Sheikh Muhammad Usman & Muhammad Zahid, 2022. "Temporal Instability of Factors Affecting Injury Severity in Helmet-Wearing and Non-Helmet-Wearing Motorcycle Crashes: A Random Parameter Approach with Heterogeneity in Means and Variances," IJERPH, MDPI, vol. 19(17), pages 1-24, August.
    2. Chen, Yingda & Li, Keping & Zhang, Lun & Chen, Yili & Xiao, Xue, 2024. "Modeling and analysis of mixed traffic flow capacity and stability considering human-driven vehicle drivers' trust attitude towards intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    3. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    4. Arshad Jamal & Muhammad Ijaz & Meshal Almosageah & Hassan M. Al-Ahmadi & Muhammad Zahid & Irfan Ullah & Rabia Emhamed Al Mamlook, 2022. "Implementing the Maximum Likelihood Method for Critical Gap Estimation under Heterogeneous Traffic Conditions," Sustainability, MDPI, vol. 14(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sami Abdullah Osman & Meshal Almoshaogeh & Arshad Jamal & Fawaz Alharbi & Abdulhamid Al Mojil & Muhammad Abubakar Dalhat, 2022. "Intelligent Assessment of Pavement Condition Indices Using Artificial Neural Networks," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    2. Kanghyun Kim & Jungyeol Hong, 2023. "Severity Predictions for Intercity Bus Crashes on Highway Using a Random Parameter Ordered Probit Model," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    3. Muhammad Ijaz & Lan Liu & Yahya Almarhabi & Arshad Jamal & Sheikh Muhammad Usman & Muhammad Zahid, 2022. "Temporal Instability of Factors Affecting Injury Severity in Helmet-Wearing and Non-Helmet-Wearing Motorcycle Crashes: A Random Parameter Approach with Heterogeneity in Means and Variances," IJERPH, MDPI, vol. 19(17), pages 1-24, August.
    4. Filip Filipović & Dušan Mladenović & Krsto Lipovac & Dillip Kumar Das & Bojana Todosijević, 2022. "Determining Risk Factors That Influence Cycling Crash Severity, for the Purpose of Setting Sustainable Cycling Mobility," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    5. Xintao Li & Xue’er Xu & Diyi Liu & Mengqiao Han & Siqi Li, 2022. "Consumers’ Willingness to Pay for the Solar Photovoltaic System in the Post-Subsidy Era: A Comparative Analysis under an Urban-Rural Divide," Energies, MDPI, vol. 15(23), pages 1-22, November.
    6. Yunes Almansoub & Ming Zhong & Asif Raza & Muhammad Safdar & Abdelghani Dahou & Mohammed A. A. Al-qaness, 2022. "Exploring the Effects of Transportation Supply on Mixed Land-Use at the Parcel Level," Land, MDPI, vol. 11(6), pages 1-28, May.
    7. Asif Raza & Ming Zhong & Muhammad Safdar, 2022. "Evaluating Locational Preference of Urban Activities with the Time-Dependent Accessibility Using Integrated Spatial Economic Models," IJERPH, MDPI, vol. 19(14), pages 1-33, July.
    8. Tufail Ahmed & Mehdi Moeinaddini & Meshal Almoshaogeh & Arshad Jamal & Imran Nawaz & Fawaz Alharbi, 2021. "A New Pedestrian Crossing Level of Service (PCLOS) Method for Promoting Safe Pedestrian Crossing in Urban Areas," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    9. Iftikhar Hussain & Haiyan Wang & Muhammad Safdar & Quoc Bang Ho & Tina D. Wemegah & Saima Noor, 2022. "Estimation of Shipping Emissions in Developing Country: A Case Study of Mohammad Bin Qasim Port, Pakistan," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    10. Lehua Bi & Shaorui Zhou & Jianjie Ke & Xiaoming Song, 2023. "Knowledge-Mapping Analysis of Urban Sustainable Transportation Using CiteSpace," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    11. Hu, Beibei & Sun, Yue & Li, Zixun & Zhang, Yanli & Sun, Huijun & Dong, Xianlei, 2024. "Competitive advantage of car-sharing based on travel costs comparison model: A case study of Beijing, China," Research in Transportation Economics, Elsevier, vol. 103(C).
    12. Danish Farooq & Sarbast Moslem & Arshad Jamal & Farhan Muhammad Butt & Yahya Almarhabi & Rana Faisal Tufail & Meshal Almoshaogeh, 2021. "Assessment of Significant Factors Affecting Frequent Lane-Changing Related to Road Safety: An Integrated Approach of the AHP–BWM Model," IJERPH, MDPI, vol. 18(20), pages 1-17, October.
    13. Hao Dong & Yang Zhang & Tianqing Chen & Juan Li, 2023. "Acceptance Intention and Behavioral Response to Soil-Testing Formula Fertilization Technology: An Empirical Study of Agricultural Land in Shaanxi Province," IJERPH, MDPI, vol. 20(2), pages 1-13, January.
    14. Teng Yu & Yajun Zhang & Ai Ping Teoh & Anchao Wang & Chengliang Wang, 2023. "Factors Influencing University Students’ Behavioral Intention to Use Electric Car-Sharing Services in Guangzhou, China," SAGE Open, , vol. 13(4), pages 21582440231, November.
    15. Qianqian Gong & Jiaming Li & Lingzhi Wu & Miner Zhu & Maoyu Luo & Jingyi Sun & Wenqing Fu & Renfeng Ma & Xianjun Liang, 2023. "Exploring Accessibility and Its Impact in the Mountain City: A Typical Case Study of Nyingchi City, Tibet Autonomous Region, China," Land, MDPI, vol. 12(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8874-:d:867034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.