IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8441-d859732.html
   My bibliography  Save this article

Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China

Author

Listed:
  • Ji He

    (School of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450011, China)

  • Yu-Rong Wan

    (School of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450011, China)

  • Hai-Tao Chen

    (School of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450011, China)

  • Song-Lin Wang

    (School of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450011, China)

Abstract

This paper, based on daily rainfall erosivity model, ArcGIS, trend analysis and Kriging interpolation method, analyzed the spatial and temporal distribution characteristics of rainfall erosivity in the Luojiang River Basin of China, and then explored the influence relationship between land use change types and rainfall erosivity potential. The results showed the following: (1) from 1980 to 2019, the distribution range of multi-annual rainfall erosivity in the Luojiang River Basin was 14,674–15,227 MJ·mm/ (hm 2 ·h), with an average value of 14,102 MJ·mm/(hm 2 ·h), showing an overall increasing trend; (2) the spatial distribution of rainfall erosivity value tends to be consistent with the multi-year average rainfall, showing a decreasing trend from the middle to the periphery of the basin; (3) land use change is an important factor affecting the spatial and temporal distribution characteristic of rainfall erosivity value in the basin. The increase in rainfall erosivity will undoubtedly increase the potential of soil erosion. This study can provide theoretical reference for future basin land use planning and put forward preventive suggestions according to the distribution characteristics of rainfall erosivity.

Suggested Citation

  • Ji He & Yu-Rong Wan & Hai-Tao Chen & Song-Lin Wang, 2022. "Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8441-:d:859732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Can Yang & Tianxing Wei & Yiran Li, 2022. "Simulation and Spatio-Temporal Variation Characteristics of LULC in the Context of Urbanization Construction and Ecological Restoration in the Yellow River Basin," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    2. Dai, Cuiting & Liu, Yaojun & Wang, Tianwei & Li, Zhaoxia & Zhou, Yiwen, 2018. "Exploring optimal measures to reduce soil erosion and nutrient losses in southern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiuju Wu & Renyi Yang & Zisheng Yang, 2022. "A Study on the Rationality of Land Use Change in the Dianchi Basin during the Last 40 Years under the Background of Lake Revolution," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    2. Xinlan Liang & Lei Zhang & Shuqin He & Ke Song & Zicheng Zheng, 2023. "Characteristics and Projection of Rainfall Erosivity Distribution in the Hengduan Mountains," Land, MDPI, vol. 12(7), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Sun, Liquan & Zhang, Biao & Yin, Ziming & Guo, Huili & Siddique, Kadambot H.M. & Wu, Shufang & Yang, Jiangtao, 2022. "Assessing the performance of conservation measures for controlling slope runoff and erosion using field scouring experiments," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Nan Zhang & Qun Zhang & Yueqiao Li & Mansheng Zeng & Wan Li & Cuiying Chang & Yongrong Xu & Chunbo Huang, 2020. "Effect of Groundcovers on Reducing Soil Erosion and Non-Point Source Pollution in Citrus Orchards on Red Soil Under Frequent Heavy Rainfall," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    4. Juan An & Jibiao Geng & Huiling Yang & Hongli Song & Bin Wang, 2021. "Effect of Ridge Height, Row Grade, and Field Slope on Nutrient Losses in Runoff in Contour Ridge Systems under Seepage with Rainfall Condition," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    5. Zhongwu Zhang & Jinyuan Zhang & Liping Liu & Jian Gong & Jinqiang Li & Lei Kang, 2023. "Spatial–Temporal Heterogeneity of Urbanization and Ecosystem Services in the Yellow River Basin," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Jian Zhou & Shan Jiang & Sanjit Kumar Mondal & Jinlong Huang & Buda Su & Zbigniew W. Kundzewicz & Ziyan Chen & Runhong Xu & Tong Jiang, 2022. "China’s Socioeconomic and CO 2 Status Concerning Future Land-Use Change under the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    7. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Zheng Zang & Yuqing Zhang & Xu Xi, 2022. "Analysis of the Gross Ecosystem Product—Gross Domestic Product Synergistic States, Evolutionary Process, and Their Regional Contribution to the Chinese Mainland," Land, MDPI, vol. 11(5), pages 1-14, May.
    9. Xiaoan Chen & Ziwei Liang & Zhanyu Zhang & Long Zhang, 2020. "Effects of Soil and Water Conservation Measures on Runoff and Sediment Yield in Red Soil Slope Farmland under Natural Rainfall," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    10. Shuo Yang & Hao Su, 2022. "Multi-Scenario Simulation of Ecosystem Service Values in the Guanzhong Plain Urban Agglomeration, China," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    11. Wang, Jilei & Shi, Xiangxue & Li, Zizhong & Zhang, Yan & Liu, Yanqing & Peng, Yuxing, 2021. "Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China," Agricultural Water Management, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8441-:d:859732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.