IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v210y2018icp41-48.html
   My bibliography  Save this article

Exploring optimal measures to reduce soil erosion and nutrient losses in southern China

Author

Listed:
  • Dai, Cuiting
  • Liu, Yaojun
  • Wang, Tianwei
  • Li, Zhaoxia
  • Zhou, Yiwen

Abstract

Heavy rainfall becomes more variable and erratic in the subtropical areas, increasing unpredictable risks of soil erosion and nutrient losses on the sloping farmland. Soil management practice also plays an important role in soil erosion. However, the effects of management practices on soil erosion and nutrient losses in response to heavy rainfall remain uncertain. A field study was carried out under natural rainfalls, including five treatments: bare land as control (CK), downslope tillage (DT), hedgerows with downslope tillage (DT + HG), contour ridge tillage (CT) and straw mulch (SM). The effects of management measures on runoff depth, sediment yield and nutrient losses were evaluated during peanut growth. The results indicated that heavy rainfalls caused severer soil erosion and nutrient losses. Significantly reduced runoff and sediment loss were found in all the conservation measures (p < 0.05). Compared with CK, the runoff depths under DT, DT + HG, CT and SM were reduced by 10%, 37%, 49% and 81% respectively under heavy rainfalls. In addition, sediment loss under DT, DT+HG, CT and SM were 30.81, 7.42, 1.83 and 1.34 Mg ha−1, respectively. These values were 42%, 86%, 97% and 97% lower than that for CK, respectively. TN and TP losses were mainly controlled by sediment yield. The majority of nutrient losses occurred in the particulate fraction (93% of TN and 99% of TP). Generally, much of the TN and TP were transported by the particles <0.05 mm. Over 51% of TN was transported by fractions of <0.05 mm in CK and DT sediments under heavy rainfalls; in CT and SM, this percentage increased to 61% and 74%, respectively. The findings indicated that straw mulch is the most cost-effective management measure to control soil and nutrient losses in sloping farmland of southern China.

Suggested Citation

  • Dai, Cuiting & Liu, Yaojun & Wang, Tianwei & Li, Zhaoxia & Zhou, Yiwen, 2018. "Exploring optimal measures to reduce soil erosion and nutrient losses in southern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 41-48.
  • Handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:41-48
    DOI: 10.1016/j.agwat.2018.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418311235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.07.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Y. & Tao, Y. & Wan, K.Y. & Zhang, G.S. & Liu, D.B. & Xiong, G.Y. & Chen, F., 2012. "Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China," Agricultural Water Management, Elsevier, vol. 110(C), pages 34-40.
    2. Okeyo, A.I. & Mucheru-Muna, M. & Mugwe, J. & Ngetich, K.F. & Mugendi, D.N. & Diels, J. & Shisanya, C.A., 2014. "Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya," Agricultural Water Management, Elsevier, vol. 137(C), pages 52-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nan Zhang & Qun Zhang & Yueqiao Li & Mansheng Zeng & Wan Li & Cuiying Chang & Yongrong Xu & Chunbo Huang, 2020. "Effect of Groundcovers on Reducing Soil Erosion and Non-Point Source Pollution in Citrus Orchards on Red Soil Under Frequent Heavy Rainfall," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    2. Xiaoan Chen & Ziwei Liang & Zhanyu Zhang & Long Zhang, 2020. "Effects of Soil and Water Conservation Measures on Runoff and Sediment Yield in Red Soil Slope Farmland under Natural Rainfall," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    3. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Ji He & Yu-Rong Wan & Hai-Tao Chen & Song-Lin Wang, 2022. "Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    5. Sun, Liquan & Zhang, Biao & Yin, Ziming & Guo, Huili & Siddique, Kadambot H.M. & Wu, Shufang & Yang, Jiangtao, 2022. "Assessing the performance of conservation measures for controlling slope runoff and erosion using field scouring experiments," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Juan An & Jibiao Geng & Huiling Yang & Hongli Song & Bin Wang, 2021. "Effect of Ridge Height, Row Grade, and Field Slope on Nutrient Losses in Runoff in Contour Ridge Systems under Seepage with Rainfall Condition," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    7. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Wang, Jilei & Shi, Xiangxue & Li, Zizhong & Zhang, Yan & Liu, Yanqing & Peng, Yuxing, 2021. "Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China," Agricultural Water Management, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Wang & Xinliang Liu & Yantai Gan & Yong Li & Ying Zhao, 2023. "Conversion of Forest Hillslopes into Tea Fields Increases Soil Nutrient Losses through Surface Runoff," Land, MDPI, vol. 12(2), pages 1-14, February.
    2. Li, Zhi-guo & Gu, Chi-ming & Zhang, Run-hua & Ibrahim, Mohamed & Zhang, Guo-shi & Wang, Li & Zhang, Run-qin & Chen, Fang & Liu, Yi, 2017. "The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China," Agricultural Water Management, Elsevier, vol. 185(C), pages 145-150.
    3. Sumaryanto & Sri Hery Susilowati & Fitri Nurfatriani & Herlina Tarigan & Erwidodo & Tahlim Sudaryanto & Henri Wira Perkasa, 2022. "Determinants of Farmers’ Behavior towards Land Conservation Practices in the Upper Citarum Watershed in West Java, Indonesia," Land, MDPI, vol. 11(10), pages 1-21, October.
    4. Ndung’u, M. & Mugwe, J.N. & Mucheru-Muna, M.W. & Ngetich, F.K. & Mairura, F.S. & Mugendi, D.N., 2023. "Tied-ridging and soil inputs enhance small-scale maize productivity and profitability under erratic rainfall conditions in central Kenya," Agricultural Water Management, Elsevier, vol. 286(C).
    5. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    6. Hao Cheng & Chen Lin & Liangjie Wang & Junfeng Xiong & Lingyun Peng & Chenxi Zhu, 2020. "The Influence of Different Forest Characteristics on Non-point Source Pollution: A Case Study at Chaohu Basin, China," IJERPH, MDPI, vol. 17(5), pages 1-19, March.
    7. Miriam W Githongo & Collins M. Musafiri & Joseph M. Macharia & Milka N. Kiboi & Andreas Fliessbach & Anne Muriuki & Felix K. Ngetich, 2022. "Greenhouse Gas Fluxes from Selected Soil Fertility Management Practices in Humic Nitisols of Upper Eastern Kenya," Sustainability, MDPI, vol. 14(3), pages 1-21, February.
    8. repec:zbw:inwedp:542013 is not listed on IDEAS
    9. H. Zhang & Q. Liu & X. Yu & L. Wang, 2014. "Influences of mulching durations on soil erosion and nutrient losses in a peanut (Arachis hypogaea)-cultivated land," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1175-1187, June.
    10. Minghao Mo & Zhao Liu & Jie Yang & Yuejun Song & Anguo Tu & Kaitao Liao & Jie Zhang, 2019. "Water and sediment runoff and soil moisture response to grass cover in sloping citrus land, Southern China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(1), pages 10-21.
    11. Okeyo, A.I. & Mucheru-Muna, M. & Mugwe, J. & Ngetich, K.F. & Mugendi, D.N. & Diels, J. & Shisanya, C.A., 2014. "Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya," Agricultural Water Management, Elsevier, vol. 137(C), pages 52-58.
    12. Wang, Wei & Wu, Xiaohong & Yin, Chunmei & Xie, Xiaoli, 2019. "Nutrition loss through surface runoff from slope lands and its implications for agricultural management," Agricultural Water Management, Elsevier, vol. 212(C), pages 226-231.
    13. Zhang, Qingwen & Liu, Dinghui & Cheng, Shanghong & Huang, Xinjun, 2016. "Combined effects of runoff and soil erodibility on available nitrogen losses from sloping farmland affected by agricultural practices," Agricultural Water Management, Elsevier, vol. 176(C), pages 1-8.
    14. Hope Mwanake & Bano Mehdi-Schulz & Karsten Schulz & Nzula Kitaka & Luke O. Olang & Jakob Lederer & Mathew Herrnegger, 2023. "Agricultural Practices and Soil and Water Conservation in the Transboundary Region of Kenya and Uganda: Farmers’ Perspectives of Current Soil Erosion," Agriculture, MDPI, vol. 13(7), pages 1-32, July.
    15. Hermine Mitter & Mathias Kirchner & Erwin Schmid & Martin Schönhart, 2013. "Knowledge integration of stakeholders into bio-physical process modelling for regional vulnerability assessment," Working Papers 542013, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    16. Tianxiao Li & Pengfei Yu & Dong Liu & Qiang Fu & Renjie Hou & Hang Zhao & Song Xu & Yutian Zuo & Ping Xue, 2021. "Effects of Biochar on Sediment Transport and Rill Erosion after Two Consecutive Years of Seasonal Freezing and Thawing," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    17. Tu, Anguo & Xie, Songhua & Zheng, Haijin & Li, Hongren & Li, Ying & Mo, Minghao, 2021. "Long-term effects of living grass mulching on soil and water conservation and fruit yield of citrus orchard in south China," Agricultural Water Management, Elsevier, vol. 252(C).
    18. Shuning Lu & Chong Yao & Faqi Wu, 2023. "Effects of Counter Tillage and Slope Gradient on Nutrient Losses on Sloping Farmland," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    19. Kiboi, M.N. & Ngetich, K.F. & Fliessbach, A. & Muriuki, A. & Mugendi, D.N., 2019. "Soil fertility inputs and tillage influence on maize crop performance and soil water content in the Central Highlands of Kenya," Agricultural Water Management, Elsevier, vol. 217(C), pages 316-331.
    20. Wolka, Kebede & Mulder, Jan & Biazin, Birhanu, 2018. "Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review," Agricultural Water Management, Elsevier, vol. 207(C), pages 67-79.
    21. Panigrahi, P. & Srivastava, A.K. & Pradhan, S., 2021. "Runoff and soil conservation effects in Nagpur mandarin orchard under a sub-humid tropical climate of central India," Agricultural Water Management, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:41-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.