IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7901-d850905.html
   My bibliography  Save this article

Analyzing of Alzheimer’s Disease Based on Biomedical and Socio-Economic Approach Using Molecular Communication, Artificial Neural Network, and Random Forest Models

Author

Listed:
  • Yuksel Bayraktar

    (Department of Economics, Istanbul University, Istanbul 34452, Turkey)

  • Esme Isik

    (Department of Optician, Malatya Turgut Ozal University, Malatya 44700, Turkey)

  • Ibrahim Isik

    (Department of Electrical Electronics Engineering, Inonu University, Malatya 44280, Turkey)

  • Ayfer Ozyilmaz

    (Department of Foreign Trade, Kocaeli University, Kocaeli 41650, Turkey)

  • Metin Toprak

    (Department of Economics, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey)

  • Fatma Kahraman Guloglu

    (Department of Social Work, Yalova University, Yalova 77100, Turkey)

  • Serdar Aydin

    (School of Health Sciences, Southern Illinois University Carbondale, 1365 Douglas Drive, Carbondale, IL 62901, USA)

Abstract

Alzheimer’s disease will affect more people with increases in the elderly population, as the elderly population of countries everywhere generally rises significantly. However, other factors such as regional climates, environmental conditions and even eating and drinking habits may trigger Alzheimer’s disease or affect the life quality of individuals already suffering from this disease. Today, the subject of biomedical engineering is being studied intensively by many researchers considering that it has the potential to produce solutions to various diseases such as Alzheimer’s caused by problems in molecule or cell communication. In this study, firstly, a molecular communication model with the potential to be used in the treatment and/or diagnosis of Alzheimer’s disease was proposed, and its results were analyzed with an artificial neural network model. Secondly, the ratio of people suffering from Alzheimer’s disease to the total population, along with data of educational status, income inequality, poverty threshold, and the number of the poor in Turkey were subjected to detailed distribution analysis by using the random forest model statistically. As a result of the study, it was determined that a higher income level was causally associated with a lower risk of Alzheimer’s disease.

Suggested Citation

  • Yuksel Bayraktar & Esme Isik & Ibrahim Isik & Ayfer Ozyilmaz & Metin Toprak & Fatma Kahraman Guloglu & Serdar Aydin, 2022. "Analyzing of Alzheimer’s Disease Based on Biomedical and Socio-Economic Approach Using Molecular Communication, Artificial Neural Network, and Random Forest Models," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7901-:d:850905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    2. Andrew J. deMello, 2006. "Control and detection of chemical reactions in microfluidic systems," Nature, Nature, vol. 442(7101), pages 394-402, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoliang Xu & Longchao Xu & Li Jia, 2022. "Research on Mortality Risk of Chinese Older Adults from the Perspective of Social Health," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    2. Ayfer Ozyilmaz & Yuksel Bayraktar & Esme Isik & Metin Toprak & Mehmet Bilal Er & Furkan Besel & Serdar Aydin & Mehmet Firat Olgun & Sandra Collins, 2022. "The Relationship between Health Expenditures and Economic Growth in EU Countries: Empirical Evidence Using Panel Fourier Toda–Yamamoto Causality Test and Regression Models," IJERPH, MDPI, vol. 19(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    2. Mark Read & Paul S. Andrews & Jon Timmis & Vipin Kumar, 2011. "Techniques for grounding agent-based simulations in the real domain: a case study in experimental autoimmune encephalomyelitis," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(1), pages 67-86, May.
    3. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    4. Jacobo Ayensa-Jiménez & Marina Pérez-Aliacar & Teodora Randelovic & José Antonio Sanz-Herrera & Mohamed H. Doweidar & Manuel Doblaré, 2020. "Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas," Mathematics, MDPI, vol. 9(1), pages 1-22, December.
    5. Qing-Ju Jiao & Yan-Kai Zhang & Lu-Ning Li & Hong-Bin Shen, 2011. "BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    6. Tom C Freeman & Leon Goldovsky & Markus Brosch & Stijn van Dongen & Pierre Mazière & Russell J Grocock & Shiri Freilich & Janet Thornton & Anton J Enright, 2007. "Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-11, October.
    7. Mika Gustafsson & Michael Hörnquist, 2010. "Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
    8. Diego Fernández Slezak & Cecilia Suárez & Guillermo A Cecchi & Guillermo Marshall & Gustavo Stolovitzky, 2010. "When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    9. Matthew A Hibbs & Chad L Myers & Curtis Huttenhower & David C Hess & Kai Li & Amy A Caudy & Olga G Troyanskaya, 2009. "Directing Experimental Biology: A Case Study in Mitochondrial Biogenesis," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-12, March.
    10. Alan A Cohen & Emmanuel Milot & Qing Li & Patrick Bergeron & Roxane Poirier & Francis Dusseault-Bélanger & Tamàs Fülöp & Maxime Leroux & Véronique Legault & E Jeffrey Metter & Linda P Fried & Luigi Fe, 2015. "Detection of a Novel, Integrative Aging Process Suggests Complex Physiological Integration," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.
    11. Niki Vermeulen, 2018. "The choreography of a new research field: Aggregation, circulation and oscillation," Environment and Planning A, , vol. 50(8), pages 1764-1784, November.
    12. Armaghan W Naik & Joshua D Kangas & Christopher J Langmead & Robert F Murphy, 2013. "Efficient Modeling and Active Learning Discovery of Biological Responses," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    13. Joep P J Schmitz & Jeroen A L Jeneson & Joep W M van Oorschot & Jeanine J Prompers & Klaas Nicolay & Peter A J Hilbers & Natal A W van Riel, 2012. "Prediction of Muscle Energy States at Low Metabolic Rates Requires Feedback Control of Mitochondrial Respiratory Chain Activity by Inorganic Phosphate," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    14. Marco S Nobile & Paolo Cazzaniga & Daniela Besozzi & Dario Pescini & Giancarlo Mauri, 2014. "cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-20, March.
    15. Fabian Fröhlich & Barbara Kaltenbacher & Fabian J Theis & Jan Hasenauer, 2017. "Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
    16. Markus J. Buehler & Theodor Ackbarow, 2008. "Nanomechanical strength mechanisms of hierarchical biological materials and tissues," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(6), pages 595-607.
    17. Luca Marchetti & Rosario Lombardo & Corrado Priami, 2017. "HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    18. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    19. Luca Cardelli & Rosa D Hernansaiz-Ballesteros & Neil Dalchau & Attila Csikász-Nagy, 2017. "Efficient Switches in Biology and Computer Science," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    20. Yohei Murakami, 2014. "Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7901-:d:850905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.