IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7495-d842936.html
   My bibliography  Save this article

Developing a 3D Hydrodynamic and Water Quality Model for Floating Treatment Wetlands to Study the Flow Structure and Nutrient Removal Performance of Different Configurations

Author

Listed:
  • Yan Wang

    (PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China
    State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Xueping Gao

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

  • Bowen Sun

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

  • Yuan Liu

    (PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China)

Abstract

Floating treatment wetlands (FTWs) are widely used in surface water. The nutrient removal performance depends on both physical processes and chemical/biological transformations in FTWs. However, research describing the coupling processes of hydrodynamic and water quality in the system remains limited. Therefore, a coupled three-dimensional model of hydrodynamic and water quality for FTWs was developed based on the Environmental Fluid Dynamics Code (EFDC). Additional plant drag terms were added to the momentum equations to simulate the suspended canopy effect, and the chemical/biological processes occurring in FTWs were integrated into the original water quality equations simultaneously. The fully calibrated model was used to compare the hydrodynamic characteristics and nutrient removal performance of seven FTW configurations. The modeling results showed that the main stream would turn to the bottom and side of the plant root zone because of the block in FTWs. The differences in the hydrodynamic characteristics among the seven configurations led to a difference in water quality improvement effects. Segmenting a single FTW into a pair of parallel FTWs could achieve the maximum nitrogen and phosphorus mass removal. The results of the study are useful for designing an optimal FTW configuration in surface water.

Suggested Citation

  • Yan Wang & Xueping Gao & Bowen Sun & Yuan Liu, 2022. "Developing a 3D Hydrodynamic and Water Quality Model for Floating Treatment Wetlands to Study the Flow Structure and Nutrient Removal Performance of Different Configurations," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7495-:d:842936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marimon, Zachary A. & Xuan, Zhemin & Chang, Ni-Bin, 2013. "System dynamics modeling with sensitivity analysis for floating treatment wetlands in a stormwater wet pond," Ecological Modelling, Elsevier, vol. 267(C), pages 66-79.
    2. Brendan McAndrew & Changwoo Ahn & Joanna Spooner, 2016. "Nitrogen and Sediment Capture of a Floating Treatment Wetland on an Urban Stormwater Retention Pond—The Case of the Rain Project," Sustainability, MDPI, vol. 8(10), pages 1-14, September.
    3. Christopher Walker & Katharina Tondera & Terry Lucke, 2017. "Stormwater Treatment Evaluation of a Constructed Floating Wetland after Two Years Operation in an Urban Catchment," Sustainability, MDPI, vol. 9(10), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaozhe Chen & Ozeas S. Costa, 2023. "Nutrient Sequestration by Two Aquatic Macrophytes on Artificial Floating Islands in a Constructed Wetland," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    2. Djesser Zechner Sergio & Alexandra Rodrigues Finotti, 2023. "Field-Scale Constructed Floating Wetland Applied for Revitalization of a Subtropical Urban Stream in Brazil," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    3. Ana Isabel Abellán García & Juan C. Santamarta, 2022. "Scientific Evidence behind the Ecosystem Services Provided by Sustainable Urban Drainage Systems," Land, MDPI, vol. 11(7), pages 1-32, July.
    4. Akopov, Andranik S. & Beklaryan, Levon A. & Saghatelyan, Armen K., 2017. "Agent-based modelling for ecological economics: A case study of the Republic of Armenia," Ecological Modelling, Elsevier, vol. 346(C), pages 99-118.
    5. Angela Gorgoglione & Vincenzo Torretta, 2018. "Sustainable Management and Successful Application of Constructed Wetlands: A Critical Review," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
    6. Adeel Younas & Love Kumar & Matthew J. Deitch & Sundus Saeed Qureshi & Jawad Shafiq & Sohail Ali Naqvi & Avinash Kumar & Arjmand Qayyum Amjad & Sabzoi Nizamuddin, 2022. "Treatment of Industrial Wastewater in a Floating Treatment Wetland: A Case Study of Sialkot Tannery," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    7. Oriana Sanicola & Terry Lucke & Michael Stewart & Katharina Tondera & Christopher Walker, 2019. "Root and Shoot Biomass Growth of Constructed Floating Wetlands Plants in Saline Environments," IJERPH, MDPI, vol. 16(2), pages 1-11, January.
    8. Alexandros I. Stefanakis, 2019. "The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    9. Brendan McAndrew & Changwoo Ahn & Joanna Spooner, 2016. "Nitrogen and Sediment Capture of a Floating Treatment Wetland on an Urban Stormwater Retention Pond—The Case of the Rain Project," Sustainability, MDPI, vol. 8(10), pages 1-14, September.
    10. Chang, Ni-Bin & Lu, Jia-Wei & Chui, Ting Fong May & Hartshorn, Nicholas, 2018. "Global policy analysis of low impact development for stormwater management in urban regions," Land Use Policy, Elsevier, vol. 70(C), pages 368-383.
    11. Changwoo Ahn & Stephanie Schmidt, 2019. "Designing Wetlands as an Essential Infrastructural Element for Urban Development in the era of Climate Change," Sustainability, MDPI, vol. 11(7), pages 1-10, March.
    12. Ina Falfán & Maite Lascurain-Rangel & Gloria Sánchez-Galván & Eugenia J. Olguín & Arturo Hernández-Huerta & Melissa Covarrubias-Báez, 2023. "Visitors’ Perception Regarding Floating Treatment Wetlands in an Urban Green Space: Functionality and Emotional Values," Sustainability, MDPI, vol. 15(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7495-:d:842936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.