IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7376-d840443.html
   My bibliography  Save this article

Sustainable Manufacturing Evaluation Based on Enterprise Industry 4.0 Technologies

Author

Listed:
  • Khalid A. Eldrandaly

    (Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt)

  • Nissreen El Saber

    (Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt)

  • Mona Mohamed

    (Higher Technological Institute, 10th of Ramadan City 44629, Egypt)

  • Mohamed Abdel-Basset

    (Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt)

Abstract

Most studies in recent decades focused on transforming linear economics into circular through recovering and remanufacturing the products. Circular Economies (CE) aim to minimize the usage of resources by utilizing the waste in production as new or raw materials. Interconnectivity between parties in the industrial system provides decision-makers with rich information and anticipation of failure. Industry 4.0 technologies (I4.0) allow for handling such issues, protecting the environment by utilizing resources efficiently, and restructuring the industry to be smarter as well. This paper contributes to achieving cleaner production (CP), CE, and social for manufacturers through the linkage between 6R methodology with new technologies of I4.0 such as Blockchain technology (BCT) and big data analytical technology (BDA). In this paper, the authors proposed a Multi-criteria decision-making (MCDM) decision framework based on the best-worst method (BWM), Decision-Making trial and evaluation laboratory (DEMATEL), Technique for order of preference by similarity to ideal solution (TOPSIS), and Complex Proportional Assessment (COPRAS). The authors contributed to addressing the weaknesses and problems of these subjective MCDM methods through the cooperation of the neutrosophic theory with the usage of MCDM methods in this work. In the first stage, all criteria that influence sustainable manufacturer selection are specified using literature research on this topic. BWM-based neutrosophic theory was combined to get the criteria’s weights with the aid of DEMATEL-based neutrosophic to obtain the least and best criteria used in BWM in the second stage. The optimal sustainable manufacturer was selected based on TOPSIS and COPRAS under neutrosophic theory in the third and fourth stages, respectively. Furthermore, a case study performed indicated manufacturer 2 (A 2 ) is an optimal sustainable manufacturer in two ranking methods otherwise, manufacturer 4 (A 4 ) is the worst sustainable manufacturer. The contribution of this work is to propose a hybrid MCDM with an uncertainty theory of neutrosophic for sustainable manufacturer selection based BDA-BCT with 6R. Sensitivity analyses were carried out to show the decision’s flexibility in various scenarios. Finally, the consequences for management viewpoints were considered.

Suggested Citation

  • Khalid A. Eldrandaly & Nissreen El Saber & Mona Mohamed & Mohamed Abdel-Basset, 2022. "Sustainable Manufacturing Evaluation Based on Enterprise Industry 4.0 Technologies," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7376-:d:840443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sundarakani, Balan & Ajaykumar, Aneesh & Gunasekaran, Angappa, 2021. "Big data driven supply chain design and applications for blockchain: An action research using case study approach," Omega, Elsevier, vol. 102(C).
    2. Edvard Tijan & Saša Aksentijević & Katarina Ivanić & Mladen Jardas, 2019. "Blockchain Technology Implementation in Logistics," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    3. Mahtab Kouhizadeh & Joseph Sarkis, 2018. "Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    4. Chris Turner & Mariale Moreno & Luigi Mondini & Konstantinos Salonitis & Fiona Charnley & Ashutosh Tiwari & Windo Hutabarat, 2019. "Sustainable Production in a Circular Economy: A Business Model for Re-Distributed Manufacturing," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    5. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    6. Konrad Zimmer & Magnus Fröhling & Frank Schultmann, 2016. "Sustainable supplier management -- a review of models supporting sustainable supplier selection, monitoring and development," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1412-1442, March.
    7. Dragan Pamučar & Fatih Ecer & Goran Cirovic & Melfi A. Arlasheedi, 2020. "Application of Improved Best Worst Method (BWM) in Real-World Problems," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    8. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Cardoso Satyro & Jose Celso Contador & Sonia Francisca de Paula Monken & Anderson Ferreira de Lima & Gilberto Gomes Soares Junior & Jansen Anderson Gomes & João Victor Silva Neves & José Robert, 2023. "Industry 4.0 Implementation Projects: The Cleaner Production Strategy—A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    2. Seyyed-Alireza Radmanesh & Alireza Haji & Omid Fatahi Valilai, 2023. "Blockchain-Based Architecture for a Sustainable Supply Chain in Cloud Architecture," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    3. Joon-Seok Kim & Nina Shin, 2019. "The Impact of Blockchain Technology Application on Supply Chain Partnership and Performance," Sustainability, MDPI, vol. 11(21), pages 1-17, November.
    4. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    5. Chong Li & He Huang & Ya Luo, 2022. "An Integrated Two-Dimension Linguistic Intuitionistic Fuzzy Decision-Making Approach for Unmanned Aerial Vehicle Supplier Selection," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    6. Adeeb Noor, 2022. "Adoption of Blockchain Technology Facilitates a Competitive Edge for Logistic Service Providers," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    7. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    8. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    9. Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Jelokhani-Niaraki, Mohammadreza & Homaee, Mehdi & Nematollahi, Omid, 2022. "The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Marija Jović & Edvard Tijan & Dražen Žgaljić & Saša Aksentijević, 2020. "Improving Maritime Transport Sustainability Using Blockchain-Based Information Exchange," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    11. Taab Ahmad Samad & Rohit Sharma & Kunal K Ganguly & Samuel Fosso Wamba & Geetika Jain, 2023. "Enablers to the adoption of blockchain technology in logistics supply chains: evidence from an emerging economy," Annals of Operations Research, Springer, vol. 327(1), pages 251-291, August.
    12. Peng Xing & Junzhu Yao, 2022. "Power Battery Echelon Utilization and Recycling Strategy for New Energy Vehicles Based on Blockchain Technology," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    13. Giulio Caldarelli, 2023. "Investigating Assumptions and Proposals for Blockchain Integration in the Circular Economy. A Delphi Study," Papers 2312.13774, arXiv.org.
    14. Yasanur Kayikci & Nazlican Gozacan‐Chase & Abderahman Rejeb & Kaliyan Mathiyazhagan, 2022. "Critical success factors for implementing blockchain‐based circular supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3595-3615, November.
    15. Ashish Dwivedi & Dindayal Agrawal & Sanjoy Kumar Paul & Saurabh Pratap, 2023. "Modeling the blockchain readiness challenges for product recovery system," Annals of Operations Research, Springer, vol. 327(1), pages 493-537, August.
    16. Leng, Jiewu & Ruan, Guolei & Jiang, Pingyu & Xu, Kailin & Liu, Qiang & Zhou, Xueliang & Liu, Chao, 2020. "Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Jacob Lohmer & Elias Ribeiro da Silva & Rainer Lasch, 2022. "Blockchain Technology in Operations & Supply Chain Management: A Content Analysis," Sustainability, MDPI, vol. 14(10), pages 1-88, May.
    18. Vineet Paliwal & Shalini Chandra & Suneel Sharma, 2020. "Blockchain Technology for Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    19. Kannan Govindan & Aditi & Arshia Kaul & Jyoti Dhingra Darbari & P. C. Jha, 2023. "Analysis of supplier evaluation and selection strategies for sustainable collaboration: A combined approach of best–worst method and TOmada de Decisao Interativa Multicriterio," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4426-4447, November.
    20. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7376-:d:840443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.